| 研究生: |
林鈺皓 Lin, Yu-Hao |
|---|---|
| 論文名稱: |
WWOX與Zfra在神經退化疾病中的角色 Role of WWOX and Zfra in preventing Neurodegeneration |
| 指導教授: |
張南山
Chang, Nan-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 阿茲海默症 、神經死亡 、WWOX 、Aβ 、Zfra |
| 外文關鍵詞: | Alzheimer’s disease, neuronal death, WWOX, Aβ, Zfra |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默症是老年人中最常見的失智症類型,主要的病理包含了乙型類澱粉蛋白(Aβ)堆積形成的病斑與過度磷酸化濤蛋白(Tau)形成的神經元纖維糾結。目前尚無有效治療阿茲海默症和的藥物。先前的研究顯示WWOX的表現量下降會造成類澱粉前驅蛋白降解,並產生乙型類澱粉蛋白堆積導致神經死亡。同時亦發現WWOX會結合濤蛋白及其磷酸化酶GSK3β、ERK和JNK1。Zinc finger-like protein that regulates apoptosis(Zfra) 是31-氨基酸長的鋅指狀WWOX結合蛋白。我們假設Zfra可以藉由減少乙型類澱粉蛋白堆積及濤蛋白的過度磷酸化,進而改善學習記憶能力受損的症狀。本篇研究方法是使用了帶有APPswe、PS1M146V及TauP301L三種轉殖基因的小鼠(全名129-Psen1tm1Mpm Tg (APPswe,tauP301L) 1Lfa/Mmjax,以下簡稱3xTg),分別在3個月及10個月大的時候進行三個禮拜的Zfra蛋白連續注射,之後使用水迷宮實驗和物件辨認測試進行測試評估老鼠的學習與記憶能力。並收集老鼠的腦組織使用切片分析阿茲海默症相關的病理症狀Aβ病斑、Tau蛋白的磷酸化程度等。實驗結果顯示接受過Zfra注射的3xTg小鼠的學習記憶能力有所改善,小鼠腦中SH3GLB2表現量、TPC6AΔ表現量、tau蛋白磷酸化程度以及Aβ堆積造成的斑塊顯著降低。同時10個月大 Wwox +/-小鼠較同年紀Wwox + / +小鼠有較差的學習記憶能力。本研究的結論是Zfra蛋白可以改善3xTg小鼠的學習記憶能力與減少腦中的 Aβ、TPC6AΔ、磷酸化tau和SH3GLB2蛋白的聚集,且Zfra可能是經由影響WWOX的功能進而改善阿茲海默症相關的症狀
Alzheimer’s disease (AD) is the most common form of dementia in elderly. Pathologically, AD is characterized by high densities of amyloid plaques, constructed by amyloid-β (Aβ), and neurofibrillary tangles, consisted of hyperphosphorylated Tau tangled proteins. There are still no treatments for AD. Previous studies from our laboratory have shown that WWOW downregulation leads to to amyloid precursor protein cleavage, Aβ aggregation and neuronal death. Also, WWOX binds Tau protein and Tau protein kinases (e.g. GSK3β、ERK, and JNK1) so as to block their functional activities. Zinc finger-like protein that regulates apoptosis (Zfra) is a 31-amino-acid protein, and also a WWOX-binding protein. We hypothesize that Zfra reduces the Aβ aggregation and hyperphosphorylation of Tau protein, and improve the learning and memory impairment. In this study, we used the triple transgenic mice (3xTg), 129-Psen1tm1Mpm Tg (APPswe, tauP301L)1Lfa/Mmjax, as an animal model. The mice at the ages of 3 and 10 months were subjected to weekly Zfra injection for three weeks. After that, Morris Water Maze and Object Recognition Test were used to determine the learning and memory ability. AD-related pathologies, including Aβ plaque and Tau phosphorylation level, were then evaluated by brain tissue slides. The results showed that learning and memory impairment were improved in Zfra injection 3xTg mice. In addition, the protein levels of SH3GLB2 and TPC6AΔ along with Tau phosphorylation and Aβ aggregation were significantly decreased. Furthermore, the learning and memory ability of Wwox +/- mice was worse than Wwox + / +mice at the age of 10 month. In conclusion, Zfra protein improves the learning and memory ability of 3xTg mice due, in part, to reduction of SH3GLB2, TPC6AΔ Tau phosphorylation and Aβ deposition. Zfra probably improves the AD-related pathology via enhancement of the WWOX function.
1. Bednarek, A.K., K.J. Laflin, R.L. Daniel, Q. Liao, K.A. Hawkins, and C.M. Aldaz, WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res, 2000. 60(8): p. 2140-5.
2. Chang, N.S., N. Pratt, J. Heath, L. Schultz, D. Sleve, G.B. Carey, and N. Zevotek, Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem, 2001. 276(5): p. 3361-70.
3. Ried, K., M. Finnis, L. Hobson, M. Mangelsdorf, S. Dayan, J.K. Nancarrow, E. Woollatt, G. Kremmidiotis, A. Gardner, D. Venter, E. Baker, and R.I. Richards, Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet, 2000. 9(11): p. 1651-63.
4. Krummel, K.A., S.R. Denison, E. Calhoun, L.A. Phillips, and D.I. Smith, The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer, 2002. 34(2): p. 154-67.
5. Chang, N.S., Bubbling cell death: A hot air balloon released from the nucleus in the cold. Exp Biol Med (Maywood), 2016. 241(12): p. 1306-15.
6. Ludes-Meyers, J.H., A.K. Bednarek, N.C. Popescu, M. Bedford, and C.M. Aldaz, WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res, 2003. 100(1-4): p. 101-10.
7. Chang, N.S., L.J. Hsu, Y.S. Lin, F.J. Lai, and H.M. Sheu, WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med, 2007. 13(1): p. 12-22.
8. O'Keefe, L.V. and R.I. Richards, Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett, 2006. 232(1): p. 37-47.
9. Del Mare, S., K.C. Kurek, G.S. Stein, J.B. Lian, and R.I. Aqeilan, Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma. Am J Cancer Res, 2011. 1(5): p. 585-94.
10. Chang, J.Y., R.Y. He, H.P. Lin, L.J. Hsu, F.J. Lai, Q. Hong, S.J. Chen, and N.S. Chang, Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp Biol Med (Maywood), 2010. 235(7): p. 796-804.
11. Salah, Z., R. Aqeilan, and K. Huebner, WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol, 2010. 6(2): p. 249-59.
12. Chiang, M.F., P.Y. Chou, W.J. Wang, C.I. Sze, and N.S. Chang, Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Front Oncol, 2013. 3: p. 43.
13. Gardenswartz, A. and R.I. Aqeilan, WW domain-containing oxidoreductase's role in myriad cancers: clinical significance and future implications. Exp Biol Med (Maywood), 2014. 239(3): p. 253-63.
14. Salah, Z., T. Bar-mag, Y. Kohn, F. Pichiorri, T. Palumbo, G. Melino, and R.I. Aqeilan, Tumor suppressor WWOX binds to DeltaNp63alpha and sensitizes cancer cells to chemotherapy. Cell Death Dis, 2013. 4: p. e480.
15. Hsu, L.J., L. Schultz, Q. Hong, K. Van Moer, J. Heath, M.Y. Li, F.J. Lai, S.R. Lin, M.H. Lee, C.P. Lo, Y.S. Lin, S.T. Chen, and N.S. Chang, Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J Biol Chem, 2009. 284(23): p. 16049-59.
16. Hurtado, D.E., L. Molina-Porcel, J.C. Carroll, C. Macdonald, A.K. Aboagye, J.Q. Trojanowski, and V.M. Lee, Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer's disease. J Neurosci, 2012. 32(21): p. 7392-402.
17. Chen, S.J., S.S. Huang, and N.S. Chang, Role of WWOX and NF-kappaB in lung cancer progression. Transl Respir Med, 2013. 1(1): p. 15.
18. Agerman, K., C. Baudet, B. Fundin, C. Willson, and P. Ernfors, Attenuation of a caspase-3 dependent cell death in NT4- and p75-deficient embryonic sensory neurons. Mol Cell Neurosci, 2000. 16(3): p. 258-68.
19. Lee, E.J., J.E. Han, M.S. Woo, J.A. Shin, E.M. Park, J.L. Kang, P.G. Moon, M.C. Baek, W.S. Son, Y.T. Ko, J.W. Choi, and H.S. Kim, Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-alpha activation. J Immunol, 2014. 193(5): p. 2384-93.
20. Shen, Y., P. He, Z. Zhong, C. McAllister, and K. Lindholm, Distinct destructive signal pathways of neuronal death in Alzheimer's disease. Trends Mol Med, 2006. 12(12): p. 574-9.
21. Chang, H.T., C.C. Liu, S.T. Chen, Y.V. Yap, N.S. Chang, and C.I. Sze, WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget, 2014. 5(23): p. 11792-9.
22. Bouteille, N., K. Driouch, P.E. Hage, S. Sin, E. Formstecher, J. Camonis, R. Lidereau, and F. Lallemand, Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene, 2009. 28(28): p. 2569-80.
23. Hong, Q., C.I. Sze, S.R. Lin, M.H. Lee, R.Y. He, L. Schultz, J.Y. Chang, S.J. Chen, R.J. Boackle, L.J. Hsu, and N.S. Chang, Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One, 2009. 4(6): p. e5755.
24. Huang, S.S., W.P. Su, H.P. Lin, H.L. Kuo, H.L. Wei, and N.S. Chang, Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J Biol Chem, 2016. 291(33): p. 17319-31.
25. Pierrat, B., M. Simonen, M. Cueto, J. Mestan, P. Ferrigno, and J. Heim, SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics, 2001. 71(2): p. 222-34.
26. Lee, M.H., S.R. Lin, J.Y. Chang, L. Schultz, J. Heath, L.J. Hsu, Y.M. Kuo, Q. Hong, M.F. Chiang, C.X. Gong, C.I. Sze, and N.S. Chang, TGF-beta induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid beta plaques in Alzheimer's disease. Cell Death Dis, 2010. 1: p. e110.
27. Chang, J.Y., M.H. Lee, S.R. Lin, L.Y. Yang, H.S. Sun, C.I. Sze, Q. Hong, Y.S. Lin, Y.T. Chou, L.J. Hsu, M.S. Jan, C.X. Gong, and N.S. Chang, Trafficking protein particle complex 6A delta (TRAPPC6ADelta) is an extracellular plaque-forming protein in the brain. Oncotarget, 2015. 6(6): p. 3578-89.
28. Hsu, L.J., L. Schultz, J. Mattison, Y.S. Lin, and N.S. Chang, Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochem Biophys Res Commun, 2005. 327(2): p. 415-23.
29. Hong, Q., L.J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N.S. Chang, Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response. BMC Mol Biol, 2007. 8: p. 50.
30. Sacher, M., Y.G. Kim, A. Lavie, B.H. Oh, and N. Segev, The TRAPP complex: insights into its architecture and function. Traffic, 2008. 9(12): p. 2032-42.
31. Chang, J.Y. and N.S. Chang, WWOX dysfunction induces sequential aggregation of TRAPPC6ADelta, TIAF1, tau and amyloid beta, and causes apoptosis. Cell Death Discov, 2015. 1: p. 15003.
32. Sze, C.I., M. Su, S. Pugazhenthi, P. Jambal, L.J. Hsu, J. Heath, L. Schultz, and N.S. Chang, Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem, 2004. 279(29): p. 30498-506.
33. Hsu, L.J., Q. Hong, L. Schultz, E. Kuo, S.R. Lin, M.H. Lee, Y.S. Lin, and N.S. Chang, Zfra is an inhibitor of Bcl-2 expression and cytochrome c release from the mitochondria. Cell Signal, 2008. 20(7): p. 1303-12.
34. Niu, J., J. Xiong, D. Hu, F. Zeng, S. Nie, S. Mao, T. Wang, Z. Zhang, and Z. Zhang, 2',3'-Dideoxycytidine Protects Dopaminergic Neurons in a Mouse Model of Parkinson's Disease. Neurochem Res, 2017.
35. Mallaret, M., M. Synofzik, J. Lee, C.A. Sagum, M. Mahajnah, R. Sharkia, N. Drouot, M. Renaud, F.A. Klein, M. Anheim, C. Tranchant, C. Mignot, J.L. Mandel, M. Bedford, P. Bauer, M.A. Salih, R. Schule, L. Schols, C.M. Aldaz, and M. Koenig, The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain, 2014. 137(Pt 2): p. 411-9.
36. Dudekula, S., M.H. Lee, L.J. Hsu, S.J. Chen, and N.S. Chang, Zfra is a small wizard in the mitochondrial apoptosis. Aging (Albany NY), 2010. 2(12): p. 1023-9.
37. Lee, M.H., W.P. Su, W.J. Wang, S.R. Lin, C.Y. Lu, Y.A. Chen, J.Y. Chang, S.S. Huang, P.Y. Chou, S.R. Ye, S.J. Chen, H. He, T.H. Liu, Y.T. Chou, L.J. Hsu, F.J. Lai, S.J. Chen, H.C. Lee, D. Kakhniashvili, S.R. Goodman, and N.S. Chang, Zfra activates memory Hyal-2+ CD3- CD19- spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget, 2015. 6(6): p. 3737-51.
38. Chang, J.Y., M.F. Chiang, S.R. Lin, M.H. Lee, H. He, P.Y. Chou, S.J. Chen, Y.A. Chen, L.Y. Yang, F.J. Lai, C.C. Hsieh, T.H. Hsieh, H.M. Sheu, C.I. Sze, and N.S. Chang, TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis, 2012. 3: p. e302.
39. Carrera, I., L. Fernandez-Novoa, C. Sampedro, and R. Cacabelos, Neuroprotective effect of Atremorine in an experimental model of Parkinson s disease. Curr Pharm Des, 2017.
40. Sze, C.I., Y.M. Kuo, L.J. Hsu, T.F. Fu, M.F. Chiang, J.Y. Chang, and N.S. Chang, A cascade of protein aggregation bombards mitochondria for neurodegeneration and apoptosis under WWOX deficiency. Cell Death Dis, 2015. 6: p. e1881.
41. Wang, H.Y., L.I. Juo, Y.T. Lin, M. Hsiao, J.T. Lin, C.H. Tsai, Y.H. Tzeng, Y.C. Chuang, N.S. Chang, C.N. Yang, and P.J. Lu, WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3beta. Cell Death Differ, 2012. 19(6): p. 1049-59.
42. Ye, S., H.K. Koon, W. Fan, Y. Xu, W. Wei, C. Xu, and J. Cai, Effect of a Traditional Chinese Herbal Medicine Formulation on Cell Survival and Apoptosis of MPP+-Treated MES 23.5 Dopaminergic Cells. Parkinsons Dis, 2017. 2017: p. 4764212.
43. Lo, C.P., L.J. Hsu, M.Y. Li, S.Y. Hsu, J.I. Chuang, M.S. Tsai, S.R. Lin, N.S. Chang, and S.T. Chen, MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. Eur J Neurosci, 2008. 27(7): p. 1634-46.