| 研究生: |
李政璋 Li, Jheng-Jhang |
|---|---|
| 論文名稱: |
運用微機電技術研製PDMS生醫晶片 Implementation of PDMS Biochip by MEMS Technology |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 微機電 、全膜片箝制 、離子通道 、針膜法 |
| 外文關鍵詞: | MEMS, Whole cell recording, Ion channel, Probe insertion |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,單細胞領域的研究一直是許多學者致力去探討的,他們去觀察單一細胞內基因、蛋白質和疾病之間的關係,期望能在基因表現分析、疾病診斷、藥物篩選等方面能有更加的突破;然而,傳統的膜片箝制方式雖然可行,但是需要純熟的操作技術,且相當耗費時間但只能得到少量的記錄資訊。所以,如果能製出一項能快速檢測離子通道活動的工具,那便是一項重大突破,而生醫晶片就是其中一項。
除了能快速檢測外,本研究還希望能快速製造且降低成本,所以材料方面將使用可塑性強的PDMS和低成本的發泡聚苯乙烯;在製程方面將使用兩種方式來製作生醫晶片,第ㄧ種是使用微機電製程技術,利用黃光顯影技術搭配濕式、乾式低溫蝕刻製程來完成含有陣列式三階或兩階同心圓柱為結構的矽母模,最後使用非破壞性PDMS的脫模技術得到晶片,使矽母模不被破壞來達到重複性使用的效果。第二種為利用針膜法的方式來製作晶片,針膜法意指利用一根尖端直徑為1μm的針,在所需的材料上製作出約1μm小洞。
雖然兩種方式目的是相同的,但在製作方式卻大不同,利用微機電製程技術雖然較花時間且成本較高,但精密度良好能控制微孔洞大小;雖然針膜法準確率較差,但是如果能將晶片阻抗控制在可量測範圍內,其低成本的經濟效益是相當吸引人的。
最後本研究利用模片箝制系統先針對針膜法製作出的晶片進行量測,所得到的晶片阻抗為:PDMS材質的晶片為1MΩ而保麗龍材質晶片為4.7MΩ;由此可知,此技術在膜片箝制的工具上是相當有潛力的去開發的。
In recent years, many scholars in electrophysiological field have devoted to investigate the relationship among genes, proteins and diseases by patch-clamp technology. The investigation of ion channels in the level of gene expression and protein structure can illuminate pathogenesis of many diseases, and as such can discover potential therapeutic targets and contribute to new drug invention.
However, the drawbacks of conventional patch-clamp method are time-consuming and low through-put. On the other hand, it needs highly-skilled operation to clamp the cell membrane of single cell for achieving the giga-ohm seal resistance. For these reasons, the biochip platform with a simple procedure will not only replace the traditional patch clamp technology but also provide high through-put function. For the above reasons and the need of future electrophysiological studies, how to design a practical biochip platform is a crucial issue.
Therefore, we try to develop a low-cost and high-throughput biochip platform by polymer (PDMS and polystyrene foam) in this study. First of all, we employed two methods to fabricate the biochip platform. One is the traditional MEMS technology. By pattering and etching processes, we created the two and three levels pillar-shaped silicon masters, respectively. The other is Probe insertion. In this novel approach, the 1μm probe was inserted into polymer substrate to create the 1μm opening for clamping the cell membrane. Thus, we can fabricate the several apertures in the same time and achieve the massive produce easily.
Although the MEMS fabrication processes for manufacturing biochip platforms is time-consuming. it can control the pore size more precisely than Probe insertion. Nevertheless, the Probe insertion has advantages of low-cost, disposable, simple fabrication processes, and rapid massive product. Finally, the open resistance of PDMS chip and a Polystyrene foam manufactured by Probe insertion are 1MΩ and 4.7MΩ, respectively. On the other hand, the PDMS and Polystyrene foam have a lower dielectric constant than silicon-based substrate and have no parasitic capacitance on impedance measurement. Thus, the Polymer-based patch clamp chip manufactured by Probe insertion will be promising.
[1] B. Xu, Z. Liu, Y.K. Lee, A. Mak, M. Yang, “A PDMS microfluidic system with poly(ethylene glycol)/SU-8 based apertures for planar whole cell-patch-clamp recordings”, Sensors and Actuators A: Physical,2009.
[2] Z. Gong, K. Nagarajan, S. Penmetsa, D. Mills and L. Que, “A patch-clamp device with integrated actuators for cell selection and positioning”, IEEE Xplore,2009.
[3] L. Sainiemi, S. Franssila, “Mask material effects in cryogenic deep reactive ion etching”, Journal of Vacuum Science and Technology B, 25, pp. 801-807, 2007.
[4] A. Y. Lau, P. J. Hung, A. R. Wu and L. P. Lee, “Open-access microfluidic patch-clamp array with raised lateral cell trapping sites”, Lab Chip, Vol.6,pp. 1510–1515,2006.
[5] L. Petrossian, S. J. Wilk, P. Joshi, S. Hihath, J. D. Posner,S. M. Goodnick, T.J.Thornton, “ High aspect ratio cylindrical nanoporesin silicon-on-insulator substrates”, Solid-State Electronics 51,1391–1397,2005.
[6] K. G. Klemic ,J. F. Klemic , F. J. Sigworth, “An air-molding technique for fabricating PDMS planar patch-clamp electrodes”, Pflugers Arch – Eur J Physiol 449: 564–572,2005.
[7] J. Seo, C. I.Zanetti, J. Diamond, R. Lal, L. P. Leea, “Integrated multiple patch-clamp array chip via lateral cell trapping junctions”, Appl. Phys. Lett., Vol. 84, No. 11,2004.
[8] R. Pantoja , J. M. Nagarah , D. M. Starace , N. A. Melosh, R. Blunck , F. Bezanilla , J. R. Heath , “Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics”, Biosensors and Bioelectronics 20 ,509–517,2004.
[9] S. Pandey, Z. Ferdous ,M. H. White, “A Planar MEMS Blo-Chip for Recording Ion-Channel Currents in Biological Cells, “Proc. of SPIE Vol. 5062,2003.
[10] K. G. Klemic , J. F. Klemic , M. A. Reed , F. J. Sigworth, “Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells”, Biosensors and Bioelectronics 17 ,597_/604,2002.
[11]T. M. Kubow, K. C. Cheung, L. F. Bentley, and L. P. Lee, “Microfabricated Patch-clamp Array for Neural MEMS Applications”, Mat. Res. Soc. Symp. Proc. Vol. 729,2002.
[12] 黃俊凱,楊忠彥,”微機電蝕刻製程氣體的選擇”,奈米通訊第九卷第三期,2002。
[13] 李國賓,”下一波生物晶片-微流體生醫晶片”,科學發展第385期,2005。
[14] 呂宗行,”微機電系統概論” ,2008。
[15] 鍾震桂,”成大奈微所元件實作班上課講義”,2009。
[16] 蝕刻技術:http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch4.htm
[17] 保麗龍傳;http://www.epa.gov.tw/,行政院環保署。
[18] 盧彥池,利用面型微加工改進單細胞動作電位量測平台陣列式單細胞動作電位量測平台之研製,國立成功大學奈米科技暨微系統工程研究所碩士論文,2007.
[19] 郭信宏,透明生物晶片平台應用於細胞膜箝制技術之研製,國立成功大學電機工程系研究所碩士論文,2009。
[20] 陳志遠,陣列式細胞晶片平台應用於單一細胞膜動作電位之量測,國立成功大學奈米科技暨微系統工程研究所碩士論文,2009。
校內:2015-08-30公開