| 研究生: |
陳柏瑋 Chen, Bo-Wei |
|---|---|
| 論文名稱: |
不同視覺訓練環境對大專棒球選手動態視覺能力之成效比較 Comparison of the Effectiveness of Different Vision Training Environments on Dynamic Visual Acuity among Collegiate Baseball Players |
| 指導教授: |
洪郁修
Hung, Yu-Hsiu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 215 |
| 中文關鍵詞: | 動態視覺 、視覺訓練 、沉浸式訓練 、場景模擬 、大專棒球選手 |
| 外文關鍵詞: | dynamic visual acuity, vision training, immersive training, scene simulation, collegiate baseball players |
| 相關次數: | 點閱:22 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
棒球打擊手需要優異的動態視覺能力來判斷高速來球的軌跡與旋轉,而現有的頭戴式VR訓練存在成本過高、副作用明顯等問題,限制了在基層棒球隊的推廣應用。基於此現況,本研究開發一套成本較低、副作用較少的擬真式動態視覺訓練軟體,以提升棒球選手的動態視覺能力。本研究旨在驗證自行開發的擬真式動態視覺訓練軟體之有效性,同時比較擬真式與實驗室典型Landolt C動態視覺訓練對大專棒球選手動態視力之影響,為運動訓練軟體設計提供實證依據。實驗採用前後測實驗設計,招募國立成功大學甲組棒球隊22名選手(平均年齡21.2歲),隨機分配至實驗組:擬真式動態視覺訓練組(n=11)與對照組:Landolt C動態視覺訓練組(n=11)。實驗為期兩週共8次訓練,使用Senaptec Sensory Station的Target Capture模式作為前後測評估工具,並記錄訓練軟體內部學習表現。資料分析採用Wilcoxon Signed-Rank Test、Mixed-Design ANOVA及Pearson相關分析。研究結果發現整體樣本中兩種訓練環境均未在Target Capture測驗中達到統計顯著提升,然而,球齡五年以上的選手在Wilcoxon Signed-Rank Test ( p = .016)以及Mixed-Design ANOVA 的時間主效應分析 (p = .036)中,均呈現顯著的分數提升。本研究開發的擬真式訓練軟體,提供了一種低成本且副作用低的視覺訓練替代方案,為動態視覺訓練的實務應用與個人化訓練設計提供了參考依據。
Baseball hitters require superior dynamic visual abilities to assess high-speed pitch trajectories and rotation, yet existing VR training solutions have prohibitive costs and adverse effects, limiting grassroots adoption. This study developed cost-effective simulation-based dynamic vision training software and validated its effectiveness compared to traditional Landolt C training on collegiate baseball players' dynamic visual acuity.
Twenty-two National Cheng Kung University Division I baseball players (mean age 21.2 years) were randomly assigned to simulation-based training (n=11) or Landolt C training (n=11) groups for eight sessions over two weeks. The Senaptec Sensory Station's Target Capture mode assessed pre-post performance, analyzed using Wilcoxon Signed-Rank Test, Mixed Design ANOVA, and Pearson correlation.
Results showed no significant improvement for the overall sample in either training condition. However, players with five or more years of experience demonstrated significant improvements in both the Wilcoxon Signed-Rank Test (p = .016) and Mixed Design ANOVA time main effect (p = .036). The simulation-based software provides a low-cost, low-side-effect vision training alternative, offering empirical evidence for dynamic vision training applications and personalized training design.
Abich, J. I., Parker, J., Murphy, J. S., & Eudy, M. (2021). A review of the evidence for training effectiveness with virtual reality technology. Virtual Reality, 25(4), 919-933. doi:10.1007/s10055-020-00498-8
Alshowair, A., Bail, J., AlSuwailem, F., Mostafa, A., & Abdel-Azeem, A. (2024). Use of virtual reality exercises in disaster preparedness training: A scoping review. Sage Open Medicine, 12. doi:10.1177/20503121241241936
Anderson, J. R. (2013). Cognitive skills and their acquisition: Psychology Press.
Appelbaum, L. G., & Erickson, G. (2018). Sports vision training: A review of the state-of-the-art in digital training techniques. International Review of Sport and Exercise Psychology, 11(1), 160-189. doi:10.1080/1750984x.2016.1266376
Bahill, A. T., & LaRitz, T. (1970). Why can't batters keep their eyes on the ball? American Scientist, 72, 249-253.
Beebe, L. H. (2007). What can we learn from pilot studies? Perspectives in Psychiatric Care, 43(4), 213-218. doi:10.1111/j.1744-6163.2007.00136.x
Bonato, M., Gatti, C., Rossi, C., Merati, G., & La Torre, A. (2020). Effects of visual training in tennis performance in male junior tennis players: a randomized controlled trial. Journal of Sports Medicine and Physical Fitness, 60(3), 493-499. doi:10.23736/s0022-4707.19.10218-6
Burris, K., Vittetoe, K., Ramger, B., Suresh, S., Tokdar, S. T., Reiter, J. P., & Appelbaum, L. G. (2018). Sensorimotor abilities predict on-field performance in professional baseball. Scientific Reports, 8. doi:10.1038/s41598-017-18565-7
Buscemi, A., Mondelli, F., Biagini, I., Gueli, S., D'Agostino, A., & Coco, M. (2024). Role of Sport Vision in Performance: Systematic Review. Journal of Functional Morphology and Kinesiology, 9(2). doi:10.3390/jfmk9020092
Cant, R., Cooper, S., Sussex, R., & Bogossian, F. (2019). What's in a Name? Clarifying the Nomenclature of Virtual Simulation. Clinical Simulation in Nursing, 27, 26-30. doi:10.1016/j.ecns.2018.11.003
Castaldi, E., Lunghi, C., & Morrone, M. C. (2020). Neuroplasticity in adult human visual cortex. Neuroscience and Biobehavioral Reviews, 112, 542-552. doi:10.1016/j.neubiorev.2020.02.028
Catania, V., Rundo, F., Panerai, S., & Ferri, R. (2024). Virtual Reality for the Rehabilitation of Acquired Cognitive Disorders: A Narrative Review. Bioengineering-Basel, 11(1). doi:10.3390/bioengineering11010035
Causer, J., Holmes, P. S., & Williams, A. M. (2011). Quiet Eye Training in a Visuomotor Control Task. Medicine and Science in Sports and Exercise, 43(6), 1042-1049. doi:10.1249/MSS.0b013e3182035de6
Chen, R. R., Stone, L. S., & Li, L. (2021). Visuomotor predictors of batting performance in baseball players. Journal of Vision, 21(3). doi:10.1167/jov.21.3.3
Clark, J., Betz, B., Borders, L., Kuehn-Himmler, A., Hasselfeld, K., & Divine, J. (2020). Vision training and reaction training for improving performance and reducing injury risk in athletes. Journal of Sports and Performance Vision, 2(1), e8-e16.
Classé, J. G., Semes, L. P., Daum, K. M., Nowakowski, R., Alexander, L. J., Wisniewski, J., . . . Bartolucci, A. (1997). Association between visual reaction time and batting, fielding, and earned run averages among players of the Southern Baseball League. J Am Optom Assoc, 68(1), 43-49.
DeRenne, C., Ho, K. W., Hetzler, R. K., & Chai, D. X. (1992). Effects of Warm Up With Various Weighted Implements On Baseball Bat Swing Velocity. The Journal of Strength & Conditioning Research, 6(4). Retrieved from https://journals.lww.com/nsca-jscr/fulltext/1992/11000/effects_of_warm_up_with_various_weighted.4.aspx
Dosher, B., & Lu, Z. L. (2017). Visual Perceptual Learning and Models. In J. A. Movshon & B. A. Wandell (Eds.), Annual Review of Vision Science, Vol 3 (Vol. 3, pp. 343-363).
Ellison, P., Jones, C., Sparks, S. A., Murphy, P. N., Page, R. M., Carnegie, E., & Marchant, D. C. (2020). The effect of stroboscopic visual training on eye–hand coordination. Sport Sciences for Health, 16(3), 401-410.
Erickson, G. B. (2021). Topical Review: Visual Performance Assessments for Sport. Optometry and Vision Science, 98(7), 672-680. doi:10.1097/opx.0000000000001731
Fahl, J. T., Duvivier, R., Reinke, L., Pierie, J., & Schönrock-Adema, J. (2023). Towards best practice in developing motor skills: a systematic review on spacing in VR simulator-based psychomotor training for surgical novices. Bmc Medical Education, 23(1). doi:10.1186/s12909-023-04046-1
Farrow, M., Lutteroth, C., Rouse, P. C., & Bilzon, J. L. J. (2019). Virtual-reality exergaming improves performance during high-intensity interval training. European Journal of Sport Science, 19(6), 719-727. doi:10.1080/17461391.2018.1542459
Faure, C., Limballe, A., Bideau, B., & Kulpa, R. (2020). Virtual reality to assess and train team ball sports performance: A scoping review. Journal of Sports Sciences, 38(2), 192-205. doi:10.1080/02640414.2019.1689807
Fortenbaugh, D., Fleisig, G., Onar-Thomas, A., & Asfour, S. (2011). The effect of pitch type on ground reaction forces in the baseball swing. Sports Biomechanics, 10(4), 270-279. doi:10.1080/14763141.2011.629205
Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62(1), 32-41. doi:10.1037/h0048826
Gray, R. (2009). A Model of Motor Inhibition for a Complex Skill: Baseball Batting. Journal of Experimental Psychology-Applied, 15(2), 91-105. doi:10.1037/a0015591
Gray, R. (2017). Transfer of Training from Virtual to Real Baseball Batting. Front Psychol, 8, 2183. doi:10.3389/fpsyg.2017.02183
Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav, 36(2), 212-224. doi:10.3200/JMBR.36.2.212-224
Hibbs, A., Tempest, G., Hettinga, F., & Barry, G. (2024). Impact of virtual reality immersion on exercise performance and perceptions in young, middle-aged and older adults. PLoS One, 19(10). doi:10.1371/journal.pone.0307683
Hoffman, L. G., Polan, G., & Powell, J. (1984). The relationship of contrast sensitivity functions to sports vision. Journal of the American Optometric Association, 55(10), 747-752. Retrieved from http://europepmc.org/abstract/MED/6491120
Ishigaki, H., & Miyao, M. (1993). Differences in dynamic visual acuity between athletes and nonathletes. Perceptual and Motor Skills, 77(3), 835-839. doi:10.2466/pms.1993.77.3.835
Jost, P., Cobb, S., & Hämmerle, I. (2020). Reality-based interaction affecting mental workload in virtual reality mental arithmetic training. Behaviour & Information Technology, 39(10), 1062-1078. doi:10.1080/0144929x.2019.1641228
Kato, T., & Fukuda, T. (2002). Visual search strategies of baseball batters: Eye movements during the preparatory phase of batting. Perceptual and Motor Skills, 94(2), 380-386. doi:10.2466/pms.2002.94.2.380
Khanal, S. (2015). Impact of visual skills training on sports performance: Current and future perspectives.
Kidokoro, S., Matsuzaki, Y., & Akagi, R. (2019). Acceptable timing error at ball-bat impact for different pitches and its implications for baseball skills. Human Movement Science, 66, 554-563. doi:10.1016/j.humov.2019.06.011
Kim, H. Y. (2024). Development and Usability Assessment of Virtual Reality- and Haptic Technology-Based Educational Content for Perioperative Nursing Education. Healthcare, 12(19). doi:10.3390/healthcare12191947
Klemish, D., Ramger, B., Vittetoe, K., Reiter, J. P., Tokdar, S. T., & Appelbaum, L. G. (2018). Visual abilities distinguish pitchers from hitters in professional baseball. Journal of Sports Sciences, 36(2), 171-179. doi:10.1080/02640414.2017.1288296
Kohmura, Y., Nakata, M., Kubota, A., Aoba, Y., Aoki, K., & Murakami, S. (2019). Effects of Batting Practice and Visual Training Focused on Pitch Type and Speed on Batting Ability and Visual Function. J Hum Kinet, 70, 5-13. doi:10.2478/hukin-2019-0034
Krasich, K., Ramger, B., Holton, L., Wang, L. L., Mitroff, S. R., & Appelbaum, L. G. (2016). Sensorimotor Learning in a Computerized Athletic Training Battery. Journal of Motor Behavior, 48(5), 401-412. doi:10.1080/00222895.2015.1113918
Laby, D. M., Kirschen, D. G., Govindarajulu, U., & DeLand, P. (2018). The Hand-eye Coordination of Professional Baseball Players: The Relationship to Batting. Optometry and Vision Science, 95(7), 557-567. doi:10.1097/opx.0000000000001239
Laby, D. M., Rosenbaum, A. L., Kirschen, D. G., Davidson, J. L., Rosenbaum, L. J., Strasser, C., & Mellman, M. F. (1996). The visual function of professional baseball players. American Journal of Ophthalmology, 122(4), 476-485. doi:10.1016/s0002-9394(14)72106-3
Laughlin, W. A., Fleisig, G. S., Aune, K. T., & Diffendaffer, A. Z. (2016). The effects of baseball bat mass properties on swing mechanics, ground reaction forces, and swing timing. Sports Biomechanics, 15(1), 36-47. doi:10.1080/14763141.2015.1123762
Leon, A. C., Davis, L. L., & Kraemer, H. C. (2011). The role and interpretation of pilot studies in clinical research. Journal of Psychiatric Research, 45(5), 626-629. doi:10.1016/j.jpsychires.2010.10.008
Lo, H. H. M., Zhu, M. T., Zou, Z. H., Wong, C. L., Lo, S. H. S., Chung, V. C. H., . . . Sit, R. W. S. (2024). Immersive and Nonimmersive Virtual Reality-Assisted ActiveTraining in Chronic Musculoskeletal Pain:Systematic Review andMeta-Analysis. Journal of Medical Internet Research, 26. doi:10.2196/48787
Machado, G., & da Costa, I. T. (2020). TacticUP Video Test for Soccer: Development and Validation. Frontiers in Psychology, 11. doi:10.3389/fpsyg.2020.01690
Mann, D. L., Fortin-Guichard, D., & Nakamoto, H. (2021). Review: Sport Performance and the Two-visual-system Hypothesis of Vision: Two Pathways but Still Many Questions. Optometry and Vision Science, 98(7), 696-703. doi:10.1097/opx.0000000000001739
Martin, W. F. (1987). An insight to sports: Featuring trapshooting and golf: SportsVision, Incorporated.
Miller, J., & Ludvigh, E. J. (1962). The effect of relative motion on visual acuity. Survey of ophthalmology, 7, 83-116.
Mouatt, B., Smith, A. E., Mellow, M. L., Parfitt, G., Smith, R. T., & Stanton, T. R. (2020). The Use of Virtual Reality to Influence Motivation, Affect, Enjoyment, and Engagement During Exercise: A Scoping Review. Frontiers in Virtual Reality, 1. doi:10.3389/frvir.2020.564664
Nasu, D., Baba, T., Imamura, T., Yamaguchi, M., Kitanishi, Y., & Kashino, M. (2022). Simplified Virtual Reality System Can Be Used to Evaluate the Temporal Discrimination Ability in Softball Batting as in the Real Environment. Frontiers in Sports and Active Living, 4. doi:10.3389/fspor.2022.843896
Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., . . . Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3), 183-198. doi:10.1007/s10055-017-0320-5
Pagé, C., Bernier, P. M., & Trempe, M. (2019). Using video simulations and virtual reality to improve decision-making skills in basketball. Journal of Sports Sciences, 37(21), 2403-2410. doi:10.1080/02640414.2019.1638193
Pastel, S., Marlok, J., Bandow, N., & Witte, K. (2023). Application of eye-tracking systems integrated into immersive virtual reality and possible transfer to the sports sector-A systematic review. Multimedia Tools and Applications, 82(3), 4181-4208. doi:10.1007/s11042-022-13474-y
Paull, G., & Glencross, D. (1997). Expert perception and decision making in baseball. International Journal of Sport Psychology, 28(1), 35-56. Retrieved from <Go to ISI>://WOS:A1997WU35900004
Poltavski, D., Biberdorf, D., & Poltavski, C. P. (2021). Which Comes First in Sports Vision Training: The Software or the Hardware Update? Utility of Electrophysiological Measures in Monitoring Specialized Visual Training in Youth Athletes. Frontiers in Human Neuroscience, 15. doi:10.3389/fnhum.2021.732303
Pournajaf, S., Goffredo, M., Pellicciari, L., Piscitelli, D., Criscuolo, S., Le Pera, D., . . . Franceschini, M. (2022). Effect of balance training using virtual reality-based serious games in individuals with total knee replacement: A randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 65(6). doi:10.1016/j.rehab.2021.101609
Presta, V., Vitale, C., Ambrosini, L., & Gobbi, G. (2021). Stereopsis in Sports: Visual Skills and Visuomotor Integration Models in Professional and Non-Professional Athletes. International Journal of Environmental Research and Public Health, 18(21). doi:10.3390/ijerph182111281
Radhakrishnan, U., Chinello, F., & Koumaditis, K. (2023). Investigating the effectiveness of immersive VR skill training and its link to physiological arousal. Virtual Reality, 27(2), 1091-1115. doi:10.1007/s10055-022-00699-3
Ren, Y. Y., Wang, Q. J., Liu, H. Y., Wang, G. D., & Lu, A. (2024). Effects of immersive and non-immersive virtual reality-based rehabilitation training on cognition, motor function, and daily functioning in patients with mild cognitive impairment or dementia: A systematic review and meta-analysis. Clinical Rehabilitation, 38(3), 305-321. doi:10.1177/02692155231213476
Revien, L., & Gabour, M. (1981). Sports vision: Dr Revien’s vision training exercises for athletes. New York, NY: New York Publishing.
Richlan, F., Weiss, M., Kastner, P., & Braid, J. (2023). Virtual training, real effects: a narrative review on sports performance enhancement through interventions in virtual reality. Frontiers in Psychology, 14. doi:10.3389/fpsyg.2023.1240790
Rose, T., Nam, C. S., & Chen, K. B. (2018). Immersion of virtual reality for rehabilitation - Review. Applied Ergonomics, 69, 153-161. doi:10.1016/j.apergo.2018.01.009
Ross-Stewart, L., Price, J. S., Jackson, D., & Hawkins, C. (2018). A Preliminary Investigation into the Use of an Imagery Assisted Virtual Reality Intervention in Sport. Journal of Sports Sciences, 6.
Rouse, M. W., DeLand, P., Christian, R., & Hawley, J. (1988). A comparison study of dynamic visual acuity between athletes and nonathletes. Journal of the American Optometric Association, 59(12), 946-950. Retrieved from http://europepmc.org/abstract/MED/3209790
Sawicki, G. S., Hubbard, M., & Stronge, W. J. (2003). How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories. American Journal of Physics, 71(11), 1152-1162. doi:10.1119/1.1604384
Seiderman, A. S., & Schneider, S. (1983). The athletic eye: Improved sports performance through visual training.
Solomon, H., Zinn, W. J., & Vacroux, A. (1988). Dynamic stereoacuity: a test for hitting a baseball? J Am Optom Assoc, 59(7), 522-526.
Starkes, J. L., & Ericsson, K. A. (2003). Expert Performance in Sports: Advances in Research on Sport Expertise: Human Kinetics.
Stine, C. D., Arterburn, M. R., & Stern, N. S. (1982). Vision and sports: a review of the literature. Journal of the American Optometric Association, 53 8, 627-633.
Stone, R. (2001). Virtual reality for interactive training: an industrial practitioner's viewpoint. International Journal of Human-Computer Studies, 55(4), 699-711. doi:10.1006/ijhc.2001.0497
Su, S. L., Wang, R. D., Zhou, R. B., Chen, Z. Y., & Zhou, F. (2023). The effectiveness of virtual reality, augmented reality, and mixed reality training in total hip arthroplasty: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 18(1). doi:10.1186/s13018-023-03604-z
Szymanski, D. J., & DeRenne, C. (2010). The Effects of Small Muscle Training on Baseball Hitting Performance: A Brief Review. Strength and Conditioning Journal, 32(6), 99-108. doi:10.1519/SSC.0b013e3181fda2da
Szymanski, D. J., DeRenne, C., & Spaniol, F. J. (2009). CONTRIBUTING FACTORS FOR INCREASED BAT SWING VELOCITY. Journal of Strength and Conditioning Research, 23(4), 1338-1352. doi:10.1519/JSC.0b013e318194e09c
Szymanski, D. J., Szymanski, J. M., Bradford, T. J., Schade, R. L., & Pascoe, D. D. (2007). Effect of twelve weeks of medicine ball training on high school baseball players. Journal of Strength and Conditioning Research, 21(3), 894-901. Retrieved from <Go to ISI>://WOS:000249048800041
Uchida, Y., Kudoh, D., Higuchi, T., Honda, M., & Kanosue, K. (2013). Dynamic Visual Acuity in Baseball Players Is Due to Superior Tracking Abilities. Medicine and Science in Sports and Exercise, 45(2), 319-325. doi:10.1249/MSS.0b013e31826fec97
Vaina, L. M., Belliveau, J. W., des Roziers, E. B., & Zeffiro, T. A. (1998). Neural systems underlying learning and representation of global motion. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12657-12662. doi:10.1073/pnas.95.21.12657
Vasile, A. I., & Stanescu, M. I. (2024). Strobe training as a visual training method that improves performance in climbing. Frontiers in Sports and Active Living, 6. doi:10.3389/fspor.2024.1366448
Welford, A. T. (1960). The measurement of sensory-motor performance Survey and reappraisal of 12 years progress. Ergonomics, 3(1-4), 189-230. doi:10.1080/00140136008930484
Wesemann, W., Heinrich, S. P., Jaegle, H., Schiefer, U., & Bach, M. (2020). New DIN and ISO norms for determination of visual acuity. Ophthalmologe, 117(1), 19-26. doi:10.1007/s00347-019-0943-x
Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport.
Wu, R., Yang, Q. Y., Cui, W. J., Gao, D. X., Luo, Y. F., & Wang, D. X. (2024). Relationship between visual ability assessment and punch performance in competition in male amateur boxers. Frontiers in Physiology, 15. doi:10.3389/fphys.2024.1429554
Zahabi, M., & Razak, A. M. A. (2020). Adaptive virtual reality-based training: a systematic literature review and framework. Virtual Reality, 24(4), 725-752. doi:10.1007/s10055-020-00434-w
Zhao, J., Gu, Q., Zhao, S., & Mao, J. (2022). Effects of video-based training on anticipation and decision-making in football players: A systematic review. Front Hum Neurosci, 16, 945067. doi:10.3389/fnhum.2022.945067