| 研究生: |
林建仲 Lin, Chien-Chung |
|---|---|
| 論文名稱: |
添加鈥之鈦酸鋇陶瓷的製備、分析、及介電性質 Preparation, Characterization, and Dielectric Properties of Holmium-Doped Barium Titanate Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鈦酸鋇 、鈥 、電容器 、介電性質 |
| 外文關鍵詞: | capacitor, holmium, barium titanate, dielectric properties |
| 相關次數: | 點閱:91 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鋇具有良好的鐵電性,而被應用於製作多層陶瓷電容器。由於卑金屬電極製程的出現,始有利用添加離子的方式來改善電容器之可靠度,其中尤以具有兩性取代行為之三價稀土元素為最,但過去的文獻中大多是以多種離子添加的成分為研究對象。此研究乃針對單獨添加稀土元素鈥於鈦酸鋇,以不同鋇鈦比例與添加量探討其坯體之燒結行為、取代作用與介電性質。本研究以固態反應法合成鈥離子添加之鈦酸鋇。利用熱膨脹儀分析其燒結收縮曲線配合燒結體密度量測與 SEM分析結果得知 Ba/Ti < 1的成分具有液相燒結行為,長時間的持溫將降低其燒結體密度;Ba/Ti ≧ 1的成分則在高添加量產生液相燒結行為,最大燒結收縮速率溫度則隨添加量增加而升高。鈥的添加量小於 2.00 at.%時,即具有兩性取代行為,但可能傾向取代鋇位置,之後的添加量則取代鈦位置。鈥的固溶量受到鋇鈦比影響,Ba/Ti < 1的成分具有較低的固溶量,約僅有 2.00 at.%,而 Ba/Ti ≧ 1的成分固溶量可達到 10.00 at.%。在介電性質方面,Ba/Ti < 1的成分因為具有較多的富鈦第二相,綜合來說其介電常數較低。所有系列於鈥添加量為 0.25 at.%時,具有晶界能障效應而使介電常數值大幅增加。居里點則隨鈥添加量增加而下降,於 5 at.%的添加量時,居里點平移至室溫,並且造成介電常數峰的寬化。
Barium titanate is one of the most popular materials applied for electronic ceramic elements due to its good dielectric property, and had been applied to product multilayer ceramic capacitor. Because of the presence of base-metal electrodes process, many ions were doped into barium titanate to improve the reliability of capacitor, and the amphoteric rare earth ions have the most effect. In the literatures, most authors studied the barium titanate with many ions doped and the effect of dopants became complicated. In this research, we study the effect on sintering behavior, occupational sites, and dielectric properties of holmium-doped barium titanate with various Ba/Ti ratios and holmium additions. The powders were prepared by conventional solid-state reaction. Sintering shrinkage, sintered density, and microstructural analysis show compositions of Ba/Ti < 1 result in liquid sintering mechanism. In compositions of Ba/Ti ≧ 1 liquid phase sintering dominates at high dopant concentrations, and the maximum shrinkage temperature shifts to high temperature as holmium addition increases. As holmium addition is less than 2.00 at.%, holmium substitutes both the two cation sites, however, holmium maybe tend to substitute the Ba-site. At higher addition, holmium tends to substitute Ti-site. The crystalline solution limit of holmium is affected by Ba/Ti ratio. Compositions of Ba/Ti < 1 have low solubility limit of about 2.00 at.%, and compositions of Ba/Ti ≧ 1 have higher solubility limit of about 10.00 at.%. In aspect of dielectric properties, Ba/Ti < 1 compositions have low dielectric constants resulted from Ti-rich second phases. In all series, samples show the grain boundary barrier layer effect and result in large increase in dielectric constant at holmium addition x = 0.0025. The curie point shifts to low temperature as holmium addition increases. At x = 0.05, the curie point shifts to room temperature and the dielectric peak depress.
[1] D. Hennings, “Dielectric materials for sintering in reducing atmospheres,” J. Eur. Ceram. Soc., 21, 2001, 1637-1642.
[2] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann. Introduction to ceramics, John Wiley and Sons, New York, 1976.
[3] B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
[4] G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., 58 [4], 1985, 1619-1625.
[5] D. E. Rase and R. Roy, “Phase equilibria in the system BaO-TiO2,” J. Chem. Phys., 19, 1951, 33-40.
[6] H. M. O’Bryan and J. Thomson, “Phase equilibria in the TiO2-rich region of the system BaO-TiO2,” J. Am. Ceram. Soc., 57 [12], 1974, 522-526.
[7] N. M. Hwang, S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor- (niobium) and acceptor- (magnesium) doped barium titanate,” J. Am. Ceram. Soc., 86 [1], 2003, 88-92.
[8] J. W. Jang, J. K. Lee, and K. S. Hong, “Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics,” J. Am. Ceram. Soc., 84 [9], 2001, 2001-2006.
[9] C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, Ohio, 1984.
[10] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides,” Acta. Cryst., A32, 1976, 751-767.
[11] Y. Tsur, T. D. Dunbar, and C. A. Randall, “Crystal and defect chemistry of rare earth cations in BaTiO3,” J. Electroceram., 7, 2001, 25-34.
[12] G. V. Lewis and C. R. A. Catlow, “Defect studies of doped and undoped barium titanate using computer simulation techniques,” J. Phys. Chem. Solids, 47 [1], 1986, 89-97.
[13] M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, “Influence of foreign ions on the crystal structure of BaTiO3,” J. Eur. Ceram. Soc., 20, 2000, 1997-2007.
[14] L. A. Xue, Y. Chen, and R. J. Brook, “The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3,” Mater. Sci. and Eng., B1, 1988, 193-201.
[15] A. Hitomi, Y. Tsur, C. A. Randall, and I. Scrymgeour, “Site occupancy of rare-earth cations in BaTiO3,” Jpn. J. Appl. Phys., 40, 2001, 255-258.
[16] J. Zhi, A. Chen, and Y. Zhi, “Incorporation of yttrium in barium titanate ceramics,” J. Am. Ceram. Soc., 82 [5], 1999, 1345-1348.
[17] W. H. Lee, W. A. Groen, and D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres,” J. Electroceram., 5, 2000, 31-36.
[18] P. Nanni, M. Teresa, and M. Viviani, “Incorporation of Er3+ into BaTiO3,” J. Am. Ceram. Soc., 85 [6], 2002, 1569-1575.
[19] O. Muller, and R. Roy, The major ternary structural families, New York, 1974.
[20] 吳朗,電子陶瓷入門,全欣科技,民國83年。
[21] A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure – a review of its role in ceramic science and technology,” Mat. Res. Innovat., 2000, 4, 3-26.
[22] D. Makovec, Z. Samardzija, U. Delalut, and D. Kolar, “Defect structure and phase relations of highly lanthanum-doped barium titanate,” J. Am. Ceram. Soc., 78 [8], 1995, 2193-2197.
[23] D. Makovec, M. Drofenik, and J. Barker, “Fluorine as a donor dopant in barium titanate ceramics,” J. Am. Ceram. Soc., 86 [3], 2003, 495-500.
[24] S. Sato, Y. Nakano, A. Sato, and T. Nomura, “Mechanism of improvement of resistance degradation in Y-doped BaTiO3 based MLCCs with Ni electrodes under highly accelerated life testing,” J. Eur. Ceram. Soc., 19, 1999, 1061-1065.
[25] M. T. Buscaglia, P. Nanni, V. Buscaglia, and M. Viviani, “Atomistic simulation of dopant incorporation in barium titanate,” J. Am. Ceram. Soc., 84 [2], 2001, 376-384.
[26] B. A. Hunter and C. J. Howard, LHPM for Windows, Version 1.7.7, Germany, 1997.
[27] C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University., 1990.
[28] D. Hennings, ”Control of liquid-phase-enhanced discontinuous grain growth in barium titanate,” J. Am. Ceram. Soc., 70 [1], 1987, 23-27.
[29] R. A. Young, The Rietveld method, Oxford University Press and International Union of Crystallography, New York, 1995.
[30] X. Bokhimi, A. Morales, O. Novaro, and T. Lopez, “Quantitative analysis of phase transformations in nanocrystalline materials via Rietveld refinement,” Advances in X-ray analysis, 42, 2000, 245-250.
[31] B. O’Connor and D. Li, “Influence of refinement strategies on Rietveld phase composition determinations,” Advances in X-ray analysis, 42, 2000, 204-211.
[32] G. Kimmel and J. Zabicky, “Quantitative X-ray diffractometry and structural analysis of magnesium titanate mixtures using the Rietveld refinement,” Advances in X-ray analysis, 42, 2000, 238-244.
[33] W. K. Chang, G. H. Chen, and Y. H. Lee, “Quantitative analysis of various phases in the thermal decomposition products of zircon,” The Rietveld Method討論會,台中谷關龍谷大飯店,中華民國八十四年五月十二日。