| 研究生: |
鄭豐裕 Cheng, Fong-Yu |
|---|---|
| 論文名稱: |
四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用 The Preparation of Fe3O4 Nanoparticles and their Applications in Biomedicine |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 磁性奈米粒子 、物醫學應用 、共振造影 、四氧化三鐵 |
| 外文關鍵詞: | Fe3O4(magnetite), MRI, Magnetic nanoparticle, biomedicine application |
| 相關次數: | 點閱:92 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用改良式的製備方法製備出非高分子包覆之水溶性、生物相容性且同時具有衍生化功能之四氧化三鐵奈米粒子,不僅簡化了以往製備方法所需要的條件,也改善了以往製備方式所遭遇到的問題。不同表面性質的四氧化三鐵奈米粒子隨著特性差異都可進行不同的應用,適用的範圍也會有所不同。對於生物醫學方面的應用限制,也可以符合其要求,提供更多樣化的技術與嶄新的研究,並且針對所有的生物分子都可與其結合作為新型的奈米複合材料,發揮更強大的功能。
銨基型四氧化三鐵奈米粒子可以藉由酸鹼值的變化,進行控制核酸(DNA)的吸附/脫附行為,透過此模擬平台進行藥物傳遞系統的設計與參考。羧基型四氧化三鐵奈米粒子則可以從全血的複雜成分中,成功地將染色體基因核酸純化出來,在快速檢驗的技術上提供另一種方式。氨基型四氧化三鐵奈米粒子則可以進行酵素固定化、質譜分析應用、核酸探針設計、鏈聚合反應、蛋白質的純化分離、核磁共振造影之顯影劑材料。其中最重要的是氨基型四氧化三鐵奈米粒子的衍生化功能可以符合絕大部分的需求,提供各種不同的表面修飾以應用在某些特定範圍。
本研究製備之四氧化三鐵奈米粒子在表面性質上各有差異,這些差異也顯現出不同的應用範圍,而利用各種不同實驗之測試結果可以更進一步了解這些四氧化三鐵奈米粒子的基本特性。在生物分子與化學分子的輔助之下,四氧化三鐵奈米粒子延伸出更多的生物醫學之應用層面,不論在純化方面、治療方面、檢測方面和影像醫學方面都可以有其貢獻與用處。根據這些測試的結果,本研究所製備的四氧化三鐵奈米粒子在生物醫學的應用上確實提供許多嶄新的技術、穩定多變化的優勢以及未來發展空間的拓展。
By modifying synthesized method to prepare water-soluble and biocompatible Fe3O4 nanoparticles which no polymer coated is a new technology. The as-synthesized Fe3O4 nanoparticles not only have above properties but also provide functional groups to achieve derivation. This method simplified some condictions of reaction, and it reduced some problems in synthesized methods which developed before. The Fe3O4 nanoparticles can apply to different fields by modifying the surface of them. According to diverse surface modifications of the Fe3O4 nanoparticles, their suited applications such as biomedicine, analysis, and separation are different. The Fe3O4 nanoparticles also have no limits required by biomedicine and provide many new ideas for developments and reasearchs. They can combine with most biomolecules to become a new-type nanomaterial, developing more powerful technologies.
There are three types of Fe3O4 nanoparticles prepared in this article. First, ammonium-type Fe3O4 nanoparticles can control the behaviors of DNA absorption and desorption by adjusting pH values. This reversible process can set up a simple model that applies to drug delicery systems. Second, carboxyl acid-type Fe3O4 nanoparticles could successfully separate genomic DNA in a complex condition of human whole blood. This separation technology of magnetic nanoparticles affords a rapid, easy, and efficient method in detecting diseases. The final type is amino-type Fe3O4 nanoparticles. They can achieve many applications, enzyme immobilization, mass-spectrum analysis, DNA probe, polymerase chain reaction (PCR), protein separation and contrast agent, combined with other molecules. Amino-type Fe3O4 nanoparticles is more important type than two types because of its wide variations in modifying functional groups on the surface of nanoparticles. With different functional groups, they can be applied to specifiec fields which needed.
In this article, arrording to different chatacterastics of functional groups, the three different types of Fe3O4 nanoparticles could be applied in various fields. Their detail or special properties could be understanded with experimental results and a serious of tests. With the advantages of combining chemical molecules and biomolecules, the applications of Fe3O4 nanoparticles extend and develop more powerful and new uses in biomedicine field, including separation, diagnosis, detection and image. The as-synthesized Fe3O4 nanoparticles in this modified method really show its advantages, new technologies, stability, and variable applications in many fields.
1.莊萬發, “超微粒子理論應用”, 復漢出版社, 1994
2.Schimid G, “Clusters and Colloids”: From Theory to Application, VCH: New
York, 1994
3.Link S, Wang ZL, El-Sayed MA, J. Phys. Chem. B 1999; 103: 3529-3533
4.Awschalorm DD, DiVincenzo DP. Phys Today 1995; 48, 4: 43-49
5.Blakemore RP, Frank RB. Sci Am 1971; 245: 58-65
6.(a)Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinski RE, JA.
J Am Chem Soc 2000; 122: 8940-8945 (b) Lübbe AS, Bergemann C, Riess H.
Cancer Res 1996; 56: 4686-4693 (c)Chan DCK, Kirpotin DB, Bunn PA. J Magn
Magn Mater 1993; 122: 374-378 (d)Mornet S, Vasseur S, Grasset F, Duguet E. J
Mater Chem 2004; 14, 2161-2175 (e)Dyal A, Loos K, Noto M, Chang SW, Spagnoli
C, Shafi KVPM, Ulman A, Cowman M, Gross RA. J Am Chem Soc 2003; 125:1684-
1685
7.(a)Shen L, Laibinis PE, Hatton TA. Langmuir 1999; 15: 447-453 (b) Sun S,
Zeng H. J Am Chem Soc 2002; 124:8204-5 (c)Knag YS, Risbud S, Rabolt JF,
Stroeve P. Chem Mater 1996; 8: 2209-2211 (d) Mann S, Hannington JP. J.
Colloid Interface Sci 1988, 122: 326-335 (e) Chan DCK, Kirpotin DB, Bunn PA.
J Magn Magn Mater 1993; 122: 374-378 (f)Zhang Y, Kohler N, Zhang M.
Biomaterials 2002; 23: 1553-1561 (g)Harris LA, Goff JD, Carmichael AY,
Riffle JS, Harburn JJ, Pierre TGS, Saunders M. Chem Mater 2003; 15:1367-77
8.Dyal A, Loos K, Noto, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M,
Gross RA. J Am Chem Soc 2003; 125: 1684-1685
9.Huang SH, Liao, MH, Chen DH. Biotechol Prog 2003; 19, 3: 1095-1100
10.Suzuki M, Shinkai M, Yanase M, Ito A, Honda H, Kobayashi T. Jpn J
Hyperthermic Oncol 1999; 15: 79-87
11.Shinkai MJ. Biosci Bioeng 2002; 94, 6: 606-613
12.Nagatani N, Shinkai M, Honda H, Kobayashi T. Bioteclnol Lett 2000; 22: 999-
1002
13.Davids MJ, Taylor JI, Sachsinger N, Bruce IJ. Analytical Biochemirtry 1998;
262: 92-94
14.Tong XD, Xue B, Sun Y. Biotechnol Prog 2001; 17: 134-139
15.鄭豐裕, 李琦峰, 葉晨聖. 化工資訊與商情. 2004; 7: 64-72
16.Hun YM, Jun YW, Song HT, Kim S, Choi JC, Lee JH, Yoon S, Shin JS, Suh JS,
Cheon J. J Am Chem Soc 2005; 127(35): 12387-12391
17.Jun YW, Hun YM, Choi JC, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Suh JS,
Cheon J. J Am Chem Soc 2005; 127(16): 5732-5733
18.Veishe O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N,
Ellenbonge R, Sze R, Hallahan A, Olson J, Zhang M. Nano Lett 2005; 5:
1003-1008
19.Perez JM, Simeone FJ, Tsourkas A, Josephson L, Weissleder R. Nano Lett
2004; 4: 119-122
20.Son SJ, Reichel J, He B, Schuchman M, Lee SB. J Am Chem Soc 2005; 127(20):
7316-7317
21.Manning HC, Goebel T, Thompson RC, Price RR, Lee H, Bornhop DJ.
Bioconjugate Chem 2004; 16(6): 1488-1495
22.Kohler N, Fryxell GE, Zhang M. J Am Chem Soc 2004; 126(23): 7206-7211
23.Weissledeer R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson
L. Radiology 1990; 175: 489-493
24.Thode K, Luck M, Schroder W, Semmler W, Blunk T, Muller RH, Kresse M. J
Drug Target 1997; 5: 35-43
25.Pant RP, Dhawan SK, Kataria ND, Suri DK. Journal of Magnetism and Magnetic
Materials 2002; 252: 16-19
26.Weizmann Y, Elnathan R, Lioubashevski O, Willner I. J Am Chem Soc 2005, ASAP
27.Weizmann Y, Patolsky F, Katz E, Willner I. J Am Chem Soc 2003; 125(12);
3452-3454
28.Katz E, Sheeney HIL, Basnar B, Felner I, Willner I. Langmuir 2004; 20(22):
9714-9719
29.Patolsky F, Weizmann Y, Katz E, Willner I. Angew Chem Int Ed 2003; 42: 2372-
2376
30.Weizmann Y, Patolsky F, Katz E, Willner I. ChemBioChem 2004; 5: 943-948
31.Weizmann Y, Elnathan R, Lioubashevski O, Willner I. Nano Lett 2005; 5, 4:
741-744
32.Yeh CS, Cheng FY, Shieh DB, Wu CL. R.O.C Patent 202070; US Patent submitted.
33.Lutz S, Christian D, Tampe R. J Am Chem Soc 1994; 116: 8485-8491
34.Chen CY, Luo SC, Kuo CF, Lin YS, Wu JJ, Lin MT, Liu CC, Jeng WY, Chuang WJ.
J Biol Chem 2003; 278: 17336-17343
35.Kiyama M. Bull Chem Soc Jpn 1974, 47: 1646-1650
36.Cornell RM, Schwertmann U. Occurrence and Uses. VCH:1996.
37.Jung CW. Magn Reson Imaging 1995; 13: 675–691
38.Harvey DT, Linton RW. Anal Chem 1981; 53: 1684–1688
39.Finn P, Jolly WL. Inorg Chem 1972; 11: 893–895.
40.Incorvia MJ, Contarini S. J Electrochem Soc 1989; 136: 24932498
41.Closmann C, Krvittle E, Bridges F. Am Mineral 1996; 81: 1321–1331.
42.Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB.
Biomaterials 2005; 26: 729-738
43.Gelinas S, Finch JA, Bohme P. Eng Aspects 2000; 172: 103-112
44.Chastain J, King RC. Handbook of X-ray Photoelectron Spectroscopy. MN, 1995
45.Buckland AD, Rochester CH, Topham SA. J Chem Soc Faraday Trans I 1980; 76:
302-313
46.Ansil D, Katja L, Mayumi N, Seung W, Chang CS, Kurikka VPM, Shafi U, Mary
C, Richard AG. J Am Chem Soc 2003; 125: 1684-1685
47.Hari MRG, Deendayal M, Philip DS, Max Y, Yong G. Chem Commun 2005: 4432-4434
48.Dekker RFH. Appl Biochem Biotechnol 1989; 22: 289
49.Li Z, Pinon DI, Miller LJ. Anal Biochem 1996; 240: 197
50.Meldum FC, Heywood BR, Mann S. Science 1992; 257: 522
51.Bahar T, Celebi S. Enzyme Microb Technol 2000; 26: 28
52.Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C, Hu J. Angew Chem Int
Ed 2005; 44: 5100-5103
53.Brandon Y, Mitsufumi M, Tadashi M. Journal of Biotechnology 2002; 94; 217-
224
54.Trevor LH, Tara OM, Aparna R, Cynthia S. Nucleic Acids Research 1994; 22,
21: 4543-4544
55.Martin JD, James IT, Niki S, Ian JB. Anal Biochem 1998; 262: 92-94
56.Xin X, Xu Z, Bingbin Y, Huagfang G, Huan Z, Weiyang Fei. Journal of
Magnetism and Magnetic Materials 2004; 280: 164-168
57.James IT, Carolyn DH, Martin JD, Niki S, Ian JB. Journal of Chromatography
A 2000; 890: 159-166
58.Xin X, Xu Z, Huan Z, Depu C, Weiyang F. Journal of Magnetism and Magnetic
Materials 2004; 277: 16-23
59.Choi YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Suh JS,
Cheon J. J Am Chem Soc 2005; 127: 12387-12391
60.Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg
J, Ferrucci JT. Radiology 1988; 168: 297-301
61.Saini S, Ferrucci JT. Radiology; 169: 656-
62.Hahn PF, Stark DD, Weissleder R, Elizondo G, Saini S, Ferrucci JT.
Radiology 1990; 174: 3361-3366
63.Taupitz M, Schnorr J, Abramjuk C, Wangner S, Pilgrimm H, Hunigen H, Hamm B.
J Magn Reson 2000; 12: 905-911