| 研究生: |
林子媛 Lin, Tzu-Yuan |
|---|---|
| 論文名稱: |
近斷層地震下振動台樁土互制模型實驗 Physical Modeling of Pile-Soil Interactions Subjected to Near Fault Seismic Loadings |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 土壤液化 、p-y曲線 、動態土壤結構互制 、振動台試驗 、近斷層地震 |
| 外文關鍵詞: | soil liquefaction, p-y curve, dynamic soil-structure interaction, shaking table test, near fault seismic |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於環太平洋地震帶,沿海結構物在設計上多採用深基礎設計,而沿海地質常見為易於觸發液化條件之疏鬆軟弱的沖積土層,受震後易產生土壤液化現象。而從過去地震觀測紀錄顯示,臨近斷層破裂帶附近所觀測到的地表震動特徵,具有短時間內地表單方向大幅位移及高速度脈衝,單方向高能量震波會造成結構物不易藉由擺動來有效消散能量,而高頻能量之地震訊號也會增加不同週期結構物非彈性之耐震需求。為釐清不同地震波形特徵於短期不排水情況時樁土互制行為與超額孔隙水壓之交互作用,本研究利用國家地震工程研究中心台南實驗室之振動台及小尺寸單向層狀剪力盒,進行單樁之樁土互制物理模型實驗,分析樁身應變計及土壤中微型水壓計、微型加速度規之量測資料,探討土壤受震反應及樁土互制行為。本研究針對具近斷層特徵之地震歷時進行振動台試驗,基樁受震反應引用樑理論,利用樁身應變計量測求得彎矩,以最小平方法並考慮配置與量測之邊界條件對樁身彎矩進行擬合,得出樁身彎矩分佈函數,並對此函數進行兩次微分與兩次積分得到土壤反力及基樁側向位移,以探討液化前與液化後之p-y曲線變化、土壤液化觸發行為、不同上部載重所產生之慣性力,及不同波形頻率對不同波型頻率之地震對於樁土互制行為之影響。
Taiwan is located in Circum-Pacific Seismic Belt, and the foundations of coastal structures are installed is mostly composed of saturated sandy soil, which is liquefiable during earthquakes. From the experience of seismic observations, the characteristics of the ground motion observed the near fault area are often manifested in a large displacement and a incremental velocity in a short period of time. To investigate the pile-soil interaction of earthquake motions at different levels of liquefaction, results of shaking table tests included physical modeling of pile-soil interactions, which were performed using Multi-Axial Simulation Table and small-scale laminar shear box of National Center for Earthquake Engineering. In order to exhibit the variation of dynamic behavior of pile and soil during excitation, the data of strain gauges placed on the pile surface and the piezometers and mini-accelerometers in the soil which can be used to monitor pore water pressure were analyzed. On the basis of Winkler beam theory, the bending moment can be obtained through the strain gauges on the pile. The distribution function of the bending moment curve of the pile body in the form of polynomials was obtained by the least square method and by setting proper boundary conditions. During the analysis, soil resistance(p) can be obtained by twice differentiating the bending moment curve, whereas the pile deflection(y) involves twice integrating the moment curves. Thus, the p-y curve of the soil before and after liquefaction can be obtained. According to analyses of the dynamic responses of the physical modeling, to investigate the triggering behavior of sand liquefaction, the inertial force generated by different structure loading and the pile-soil interactions in different earthquakes.
1. 黃百誼、賴晉達、柴駿甫、林凡茹(2020)。國家地震工程研究中心研究成果報告,108,pp.157-160。
2. 賴姿妤,「樁基礎沖刷橋樑模型之振動台試驗研究」,國立台灣大學土木工程學系,碩士論文(2011)
3. 林昌良,「飽和砂中模型樁之側向載重試驗」,國立台灣大學土木工程學系,碩士論文(2011)
4. 劉光晏、郭俊翔、趙書賢、王士庭、張國鎮、林昌佑 (2017),「斷層近域效應對工程設計參數之探討-以 921 集集地震為例」,土木水利,Vol.44,No. 1,pp.10-23
5. Abdoun, T., Dobry, R., O’Rourke, T. D., and Goh, S. H.(2003) “Pile response to lateral spreads: centrifuge modeling. ”, Journal of Geotechnical and Geoenvironmental engineering, ASCE, 129, 10 , pp.869-878.
6. American Petroleum Institute(API)(2021).“Recommended practice for planning, designing and constructing fixed offshore platforms.”API Report No. 2A-WSD, API, Houston.
7. Ashour, M., Norris, G., and Pilling,P.,(1998)“Lateral loading of a pile in layered soil using the strain wedge model”, Journal of geotechnical and geoenvironmental engineering, ASCE, Vol.124, No.4, pp.303-315.
8. Ashour, M.,and Norris, G.(2003)“ Lateral loaded pile response in liquefiable soil. ” Journal of Geotechnical and Geoenvironmental Engineering, ASCE , Vol.129, No.5, pp.404-414.
9. Ashford, S.A. and Rollins, K.M. (2002) “TILT: the Treasure Island liquefaction test: final report.” Report No. SSRR-2001/17, Department of Structural Engineering, Unversity of California at San Diego, California.
10. Anderson, J. C., & Bertero, V. V. (1987). “Uncertainties in establishing design earthquakes. ”Journal of Structural Engineering, Vol.113, No.8, pp.1709-1724.
11. Bertero, V. V., Mahin, S. A., & Herrera, R. A. (1978). “Aseismic design implications of near‐fault San Fernando earthquake records. ” Earthquake engineering & structural dynamics, Vol.6, No.1, pp. 31-42.
12. Casagrande, A. (1936)“Characteristics of cohesionless soils affecting the stability of slopes and earth fills. ”J. Boston Society of Civil Engineers,reprinted in Contribution to soil mechanics , Boston Society of Civil Engineers , 1940, pp.257-276.
13. Chang, B. J., and Hutchinson,T. C.(2013), “Experimental evaluation of p-y curves considering development of liquefaction.” Journal of geotechnical and geoenvironmental engineering , ASCE, Vol.139, No.4, pp.577-586.
14. Chang, W. J., Ueng, T. S., Chen, C. H., & Yang, C. W. (2010). “Coupled shear strain-pore pressure responses of soil in shaking table tests. ” Soils and foundations, Vol.50, No.2, pp.325-334.
15. Chang, W. J., Chen, J. F., Ho, H. C., & Chiu, Y. F. (2010). “ In situ dynamic model test for pile-supported wharf in liquefied sand.”Geotechnical Testing Journal, Vol.33, No.3, pp.212-224.
16. Chen, C. H., Ko, Y. Y., Chen, C. H., & Ueng, T. S. (2016).“Time-dependent dynamic characteristics of model pile in saturated sand during soil liquefaction.” Geotechnical Engineering, Vol.47, No.2, pp.89-94.
17. Dash, S. R., Bhattacharya, S., Blakeborough, A.,and Hyodo, M. (2008)“PY curve to model lateral response of pile foundations in liquefied soils.” In 14th World Conference on Earthquake Engineering, Beijing, China, pp.12-17.
18. Hall, J. F., Heaton, T. H., Halling, M. W., & Wald, D. J. (1995). “Near-source ground motion and its effects on flexible buildings. ”, Earthquake spectra, Vol.11, No.4 , pp. 569-605.
19. Hetenyi, M.(1946), “Beams on Elastic Foundation”, University of Michigan.
20. Hussien, M. N., Tobita, T., Iai, S., & Karray, M. “ (2016). Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments. ”, Soil Dynamics and Earthquake Engineering, Vol.89, pp.75-84.
21. Liu, L., and Dobry,R.(1995), “Effect of liquefaction on lateral response of piles by centrifuge model tests.”, NCEER Bullentin, Vol. 9, No. 1, p.8.
22. Ishihara,K.(1985), “Stability of natural deposits during earthquake”,International conference on soil mechanics and foundation engineering, Vol.1, pp.321-376.
23. Ishihara, K. (1993)“Liquefaction and flow failure during earthquakes.”, Geotechnique, Vol.43 , No.3, pp.351-451.
24. Matlock, H., and Reese, L. C.(1960), “Generalized solutions for laterally loaded piles.”, Journal of the Soil Mechanics and foundations Division, ASCE, Vol.85, No.5, pp.63-92.
25. Matlock,H.(1970),“Correlation for design of laterally loaded piles in soft clay.”, Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol.1, pp.577-594.
26. McClelland, B., and Focht , J.(1956), “Soil modulus for laterally loaded piles.”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.82, No.4, pp.1049-1063.
27. Reese, L.C., Cox, W., Koop, F.D.(1974), “Analysis of Laterally Loaded Piles in Sand”, Proceeding of the 6th Annual Offshore Technology Conference, Houston, Texas, Vol.2, pp.473-485.
28. Reese, L. C.,and Van Impe, W. F.(2000) ,“Single piles and pile groups under lateral loading.”, CRC press.
29. Reese, L. C.,and Welch, R. C.(1975), “Lateral loading of deep foundations in stiff clay. ”, Journal of the Geotechnical engineering division, ASCE, Vol.101, No.GT7, pp.663-649.
30. Reese, L.C., Cox, W., Koop, F.D.(1975), “Field testing and analysis of laterally loaded piles om stiff clay.”,Proceeding of the 7th Offshore technology conference, Houston , Texas, Vol.2, pp.672-690.
31. Rollins, K.M., Peterson, K.T., and Weaver, T.J.(1998), “Lateral load behavior of full-scale pile group in clay.”, Journal of geotechnical and geoenvironmental engineering, ASCE, Vol.124, No.6, pp.468-478.
32. Rollins, K. M., Gerber, T. M., Lane, J. D.,and Ashford, S. A.(2005) , “Lateral resistance of a full-scale pile group in liquefied sand.”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, No.1, pp.115-125.
33. Santamarina, J.C., Fratta,D.(1998),“Introduction to discrete signals and inverse problems in civil engineering. ”.
34. Santamarina, J.C., Fratta,D.(2005),“Discrete signals and inverse problems: an introduction for engineers and scientists. ”, John Wiley & Sons.
35. Seed, H.B.(1975), “Evaluation of soil liquefaction potential for level ground during earthquake”.
36. Shahi, S. K. and Baker, J. W. (2014). “An efficient algorithm to identify strong velocity pulses in multi-component ground motions.”, Bulletin of the Seismological Society of America ,Vol.104, No. 5, pp. 2456-2466.
37. Sladen, J. A., D'hollander R. D., and Krahn J.(1985), “The liquefaction of sands, a collapse surface approach. ”, Canadian Geotechnical Journal Vol.22, No.4, pp.564-578.
38. Tokimatsu, K., Mizuno, H., and Kakurai, M. (1996)“Building damage associated with geotechnical problems”, Special issue of Soils and Foundations ,Vol.36, pp.219-234.
39. Tokimatsu, K., and Asaka,Y.(1998), “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken -Nambu earthquake.”, Soils and Foundations, Vol.38, pp.163-177.
40. Winkler, E., (1867)“Die Lehre Von Elastizitat Und Festigkert(On Elasticity and Fixity)”, Prague.
41. Wilson, D. (1998). “Soil-pile-superstructure interaction in liquefying sand and soft clay.”, Ph.D. dissertation, Univ. of California, Davis, Davis, CA.