簡易檢索 / 詳目顯示

研究生: 游季格
You, Ji-Ge
論文名稱: Sn-9Zn-xCu無鉛銲錫合金通電前後之 振動破壞阻抗研究
A Study on Vibration Fracture Characteristics of Sn-9Zn-xCu Lead Free Solder Alloys With and Without Electrical Current Stressing
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 錫鋅銅振動破壞阻抗
外文關鍵詞: Vibration Fracture Characteristics, Sn-Zn-xCu
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   銲錫材料在使用時可能因機械振動而造成損害,且銲點是在通電狀態下運作,因此銲錫材料在通電處理前後之機械性質變化值得進行探討。故本實驗研究通電處理對Sn-9Zn-xCu(x=0, 0.2, 0.5, 0.7, 1.0wt%)無鉛銲錫合金之振動破壞阻抗影響。

      在通電前試片之金相觀察顯示,隨著Cu含量的增加,組織中散佈的共晶富Zn相隨之減少,Cu-Zn化合物(CuZn5)及富Sn相則增加。在高Cu含量試片(0.7Cu及1.0Cu)可觀察到大量樹枝晶狀初晶β-Sn。通電前之振動試驗結果顯示,少量的添加Cu會使振動性質變差,當Cu含量達0.7wt%以上時,將得到較佳的振動性質。而添加Cu元素所形成之初晶富Sn相,其層狀變形現象會主導制振性及等出力值條件下之振動破壞阻抗。此外,由SEM觀察得知晶出第二相(富Zn相、富Sn相和CuZn5)在本合金系統中對裂縫傳播方面有正面的影響。

      在通電後之試驗方面,為簡化實驗,本研究選擇振動性質較佳的1.0Cu試片進行通電試驗,並探討其因電流效應引起的機械性質變化。拉伸試驗結果顯示,拉伸強度有隨通電時間增加有先上升而後下降的趨勢,通電7小時強度最高;到通電11小時則有下降現象。和同時間及溫度(120℃)之熱處理試片比較,強度上升可能是因電流效應所影響。在振動試驗方面,隨著通電時間的增加,試片有較高的共振頻率及初始偏移量,使得裂縫有較高驅動力前進而導致振動壽命下降。顯示通電處理會使得試片振動破壞阻抗下降。

     Solder joints are applied usually in the electric surrounding and may suffer damage due to mechanical vibration. So it is worthy of looking into the properties under different electrical current conditions. The objective of present study is aimed on the current effect for vibration fracture resistance in Sn-Zn-XCu (X=0.2, 0.5, 0.7, 1.0wt%).

     Samples with no current applied observed that rich-Zn phases decreased meanwhile the Cu-Zn compounds and Sn-rich phases became much more with increasing Cu element additions. At high Cu content (0.7, 1.0wt%), a plenty of dendritic primary Sn-rich appeared in the matrix. Then specimens followed by vibration test. Vibration properties was deteriorated with a little Cu additions but it was improved when Cu content over 0.7wt%. The layer-like deformation of the primary Sn-rich phase was the major factor affected the vibration resistance of damping capacity and constant force conditions. Otherwise, the second phase (contain: rich-Zn, rich-Sn and CuZn5) had positive contribution to crack propagation.

     For simplicity, the 1.0wt% Cu samples was selected to discuss the current effect inasmuch as its proper vibration properties. The current effect was carried out by tensile and vibration test. With increasing duration the current applied the sample attained greater tensile strength initially but got worse subsequently, its optimum strength was reached at 7hr then degenerated at 11hr. To compare with modify sample, i.e. heat treatment in 120℃ and hold for the same time with no employee current. The enhance strength may ascribed to the current effect. In the aspect of vibration experiment, specimens achieved a greater resonance frequency as well as the initial deflection which promoted cracks propagated forward easily. In conclusion, specimens experienced the current treatment resulted in decreasing the vibration fracture resistance.

    第一章 前言......................1 第二章 文獻回顧..................3 2-1 Sn-Zn系銲錫合金..............3 2-2時效行為......................3 2-3振動性質......................4 2-3-1共振頻率....................4 2-3-2振動阻尼....................5 2-3-3制振性......................5 2-3-4 D-N曲線與振動壽命..........6 2-3-5裂縫傳播行為................7 2-3-6銲錫振動之表面變形特徵......7 2-4銲錫之電流效應................8 第三 章 實驗方法.................13 3-1 研究架構.....................13 3-2 合金配製、澆鑄和試片前處理條件13 3-3 金相觀察及解析...............14 3-4 拉伸試驗.....................14 3-5 振動破壞試驗.................14 3-5-1 試片尺寸規格及設備振動.....14 3-5-2 決定共振頻率 ...............15 3-6-3 振動疲勞測試...............15 3-5-4 裂縫路徑傳播機制...........15 3-5-5 對數衰減率(δ)之量測........16 3-6 通電試驗......................16 3-6-1 通電試驗之試片尺寸規格及設備16 3-6-2通電後之拉伸試驗.............16 3-6-3通電後之共振試驗.............17 第四章 實驗結果....................26 4-1 Cu含量對顯微組織之影響.......... 26 4-2 Cu含量對拉伸性質之影響..........26 4-3 Cu含量對振動破壞特性之影響......26 4-3-1 對數衰減率及D-N曲線特性.......26 4-3-2表面變形特徵分析................27 4-4通電處理對拉伸性質及振動破壞特性之影響28 4-4-1金相觀察及拉伸性質...............28 4-4-2 振動試驗.................29 第五章 討論.................54 5-1 微觀組織與拉伸性質之關係............54 5-2 Sn-Zn-xCu合金之振動壽命...........54 5-3層狀變形組織及晶出第二相對振動破壞特性之影響......55 5-3-1對共振頻率和制振性之影響.................55 5-3-2裂縫傳播對共振壽命之影響.................56 5-4 通電處理對1.0Cu試片之影響.................56 5-4-1 對拉伸性質之影響.................56 5-4-2 對振動壽命之影響.................56 第六章 結論.................61 參考資料.................62

    參考資料

    1.張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,第12期,17-18頁,民國84年。
    2.賴玄金,“從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢”,工業材料,第158期,99-107頁,民國89年。
    3.P. T. Vianco and D. R. Frear, “Issues in The Replacement of Lead-Bearing Solders”, JOM, Vol. 45, No. 7, pp.14-19, July 1993.
    4.D. Q. Yu, H. P. Xie and L. Wang, “Investigation of Interfacial Microstructure and Wetting Property of Newly Developed Sn–Zn–Cu Solders with Cu Substrate”, J. Alloys and Compounds, Vol. 385, pp. 119-125, 2004.
    5.Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration Reliability Characterization of PBGA Assemblies” Microelectron. Reliab., Vol. 40, pp. 1097-1107, 2000.
    6.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol. 8, pp. 2216-2223, 1993.
    7.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127, 1995.
    8.M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Mater. Sci. Eng., Vol. 27, pp.95-141, 2000.
    9.M. McCormack and S. Jin, " Design and Properties of New, Pb-Free Solder Alloys ", J. Electron. Mater. Vol. 23, No. 7, pp. 635-640, 1994.
    10.K Kawashima, T. Ito and M. Samurai, “Strain-Rate and Temperature Dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, J. Mater. Sci., Vol. 27, pp. 6387-6390, 1992.
    11.J. M. Song, T. S. Lui, L. H. Chen and D. Y. Tsai, “Resonant Vibration Behavior of Lead-Free Solders”, J. Electron. Mater., Vol. 32, No. 12, 2003.
    12.S. H. Huh, K. S. Kim and K. Suganuma, “Effect of Ag Addition on The Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder”, Mater. Trans., JIM, Vol. 43, No. 5, pp. 739-744, 2001.
    13.ASM Handbook, Hugh Baker, ASM International, Matals Park, Ohio, Vol. 3, Alloy Phase Diagrams, 1992.
    14.Y. Miyazawa and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn- (Ag, Bi, Zn) Eutectic Solder Alloys”, Mater. Trans, JIM, Vol. 42, pp. 776-782, 2001.
    15.K. Suganuma, T. ShotoKu, Y. Nakamura and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, J. Mater. Res., Vol 13, pp. 2859-2865, 1998.
    16.M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, July, Vol. 45, No. 7, pp. 36-40, 1993.
    17.E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, J. Electron. Mater., Vol. 23, No. 8, pp. 709-713, 1994.
    18.Y. S. Kin, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys”, J. Alloys Compd., Vol.352, pp.237-245, 2003.
    19.I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, “Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn Alloy/Cu Joints”, Mater. Trans, JIM, Vol. 43, pp. 1797-1801, 2002.
    20.S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-Free Sn-8. 55Zn-1Ag-xAl Solder Alloys and its Wetting Interaction with Cu”, J. Electron. Mater., Vol. 31, pp. 940-945, 2002.
    21.藍國峰,“Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,碩士論文,民國91年。
    22.陳剛毅、吳信賢,“Ga元素對Sn-9Zn銲錫合金之微結構與機械性質影響”,中華民國材料科學學會論文集,民國92年。
    23.C. M. L. Wu, D. Q. Yu, C. M. T Law and L. Wang, “The Properties of Sn-9Zn Lead-Free Solder Alloys Doped With Trace Rare Earth Elements”, J. Electron. Mater., Vol. 31, pp. 921-927, 2002.
    24.K. L. Lin and L. H. Wen, “The Wetting of Copper By Al-Zn-Sn Solders”, J. Mater. Sci., Mater. Electron., Vol. 9, pp 5-8, 1998.
    25.H. M. Lee, S. W. Yoon and B. J. Lee, “Thermodynamic Prediction of Interface Phases at Cu/Solder Joints”, J. Electronic Materials, Vol. 11, No. 3, 1998, pp. 1161-1166.
    26.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., pp. 330s-340s, 1976.
    27.莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    28.Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 2nd ed., pp.4-160, 1990.
    29.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol. 8, pp. 2216-2223, 1993.
    30.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127, 1995.
    31.C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Metall. Mater., Vol. 38, pp. 221-238, 1998.
    32.A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., Vol. 27, pp. 583-593, 1956
    33.S. E. Urreta De Pereyre, A. A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., Vol. 139, pp.345-360, 1993.
    34.J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., Vol.28, pp. 2395-2404, 1993.
    35.R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., Vol. 24A, pp. 701-711, 1993.
    36.E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix composites”, Metall. Mater. Trans., Vol. 26A, pp. 2803-2818, 1995.
    37.M. Okabe, T. Mori and T. Mura, “Internal Friction Caused By Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, Vol. 44, pp. 1-12, 1981.
    38.A. Wolfenden, L. S. Cook and J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden, Eds., American Society for Testing and Materials Philadelpgia, pp. 124-141, 1992.
    39.洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    40.李芳儀,“銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之研究”,國立成功大學材料科學及工程學系,碩士論文,民國92年。
    41.Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, pp. 71-91, 1989.
    42.S. Suresh and Gerberich, “Fatigue of Materials”, Appl. Mech. Rev., Vol. 45, pp. 292, 1992.
    43.S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., Vol. 14A, pp. 2375-2385, 1983.
    44.H. Ye, C. Basaran, and D. C. Hopkin, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities”, Int. J. Solids Struct., Vol. 40, pp. 4021-4032, 2003.
    45.H. Ye, C. Basaran, and D. C. Hopkin, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing”, Int. J. Solids Struct., Vol. 40, pp. 7269-7284, 2003.
    46.H. Ye, C. Basaran, and D. C. Hopkin, “Pb Phase Coarsening in Eutectic Pb/Sn Flip Chip Solder Joints under Electric Current Stressing”, Int. J. Solids Struct., Vol. 41, pp. 2743-2755, 2004.
    47.M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Mater. Sci. Eng., Vol. 27, pp. 95-141, 2000.
    48.K. A. Koh and S. J. Chua, “Electromigration in Aluminum/Silicon/Copper Metallization due to the Presence of A Thin Oxide Layer”, J. Mater. Sci. Mater. Electron, Vol. 26, No.9, pp. 1070-0175, 1997.
    49.W. C. Shih and A. L. Greer, “Transmission Electron Microscopy of Al-Cu Interconnects during In-Situ Electromigration Testing”, Thin Solids Films, Vol. 292, pp. 103-117, 1997.
    50.H. W. Wanh, B. S. Chiou and J. S. Jiang, “Electromigration in Sputtered Copper Films on Polyimide”, J. Mater. Sci. Mater. Electron, Vol. 10, pp. 267-271, 1999.
    51.G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang and Q. Li, “The Application of Electro-Plastic Technique in the Cold-Drawing of Steel Wires”, J. Mater. Process. Technol., Vol. 84, pp. 268-270, 1998.
    52.S. J. Livesey, X. Duan, R. Priestner and J. Collins, ”An Electroplastic Effect in 3.25% Silicon Steel”, Scripta Mater., Vol. 44, pp. 803-809, 2001.
    53.K. F. Yao, J. Wang, M. Zheng, P. Yu and H. Zhang, ”A Research on Electroplastic Effects in Wire-Drawing Process of An Austenitic
    Stainless Steel”, Scripta Mater., Vol. 45, pp. 533-539, 2001.
    54.G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang and Q. Li, “Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L”, Mater. Sci. Eng. A, Vol. 281, pp. 263-267, 2000.
    55.H. Conrad, “Electroplasticity in Metals and Ceramics”, Mater. Sci. Eng. A, Vol. 287, pp. 276-287, 2000.
    56.H. Conrad, “Thermally Activated Plastic Flow of Metals and Ceramics with An Electric Field or Current”, Mater. Sci. Eng. A, Vol. 322, pp. 100-107, 2002.
    57.S. Li and H. Conrad, “Electric Field Strengthening During Superplastic Creep of Zn-5wt%Al: A Negative Electroplastic Effect”, Scripta Mater., Vol. 39, No. 7, pp. 847-851, 1998.
    58.D. Yang and H. Conrad, “Exploratory Study into The Effect of An Electric Field and of High Current Density Electropulsing on the Plastic deformation of TiAl”, Intermet., Vol. 9, pp. 943-947, 2001.
    59.T. J. Davies and A. A. Ogwu, “Apossibe Route to Improving The Ductility of Brittle Intermetallic Compounds”, J. Alloys compd., Vol. 228, pp. 105-111, 1995.
    60.C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu, “Microstructure-Electromigration Correlation in A Thin Stripe of Eutectic Sn-Pb Solder Stressed between Cu Electrodes”, J. Appl. Phys., Vol. 75, No.1, pp.58-60, 1999

    下載圖示 校內:2006-07-22公開
    校外:2006-07-22公開
    QR CODE