| 研究生: |
陳子敬 Chen, Tzu-Ching |
|---|---|
| 論文名稱: |
鈷鎵共摻雜氧化鋅層及鎳金電流擴散層退火對氮化鎵二極體發光效益之研究 The effect of (Co,Ga) doped ZnO and annealing of Ni/Au layer on luminescence efficiency of GaN based LEDs |
| 指導教授: |
黃榮俊
Huang, JCA |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 氮化鎵藍光發光二極體 、效率下降 、電流擴散層 、鈷鎵共摻氧化鋅 |
| 外文關鍵詞: | Efficiency Droop, Ni/Au transparent contact layer, GaN based LEDs, ZnO:CoGa |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵系列的發光二極體都會有效率下降的問題,所以會導致藍光發光二極體在發展上受到限制,而一般來說效率下降的機制可被分為兩大類型。一是內部損耗(Internal Losses),像是歐傑複合(Auger Recombination)、作用區體積減少(Reduced Effective Volume)以及載子離域(Carrier Delocalization)。二是載子溢漏(Carrier Leakage),而其中又包含了極化效應(Polarization Charge)、非對稱的載子傳輸特性(Asymmetry)、電流壅塞(Current Crowding)、少量電洞注入(Poor hole injection)……等。而本實驗針對後面三個效率下降的因素想要透過實驗製程上的改善來減緩效率下降的問題,像是鎳金電流擴散層利用不同退火條件、溫度以及時間上的改變進而提升電流擴散的特性;而沉積鈷鎵共摻氧化鋅層是想要改善非對稱載子的傳輸特性,減緩電子電洞的載子濃度不對稱,以提升元件的電性及發光亮度。
The development of high-efficiency InGaN light-emitting diodes (LEDs) is considered one of the most important topics in the area of solid-state lighting. However, the efficiency of LEDs is limited by several factors including the high resistivity of p-GaN; hence, the severe current crowding occurs under the p electrode. For this reason, a thin Ni/Au layer with transparency below 70% in the visible region has been extensively investigated to serve as the transparent contact layer (TCL). Transparent conductive oxides (TCO), such as indium oxide (ITO), have high transparency in the visible region, allowing it to serve as the TCL in LEDs. Moreover, the effect of the asymmetry in carrier concentration and mobility is studied in InGaN pn-junction light-emitting diodes. To overcome this problem of efficiency droop, we deposit the ZnO:CoGa layer on n-GaN. This method can reduce the difference between the hole concentration and the electron concentration.
[1] J.-K. Sheu, Y. S. Lu, M.-L. Lee, W. C. Lai, C. H. Kuo, and C.-J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Applied Physics Letters, vol. 90, no. 26, p. 263511, 2007.
[2] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies,” Journal of Applied Physics, vol. 114, no. 7, p. 071101, 2013.
[3] A. Zukauskas, M.S. Shur and R. Caska, Introduction to solid state lighting, Wiley, New York, 2002.
[4] J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: Challenges and countermeasures,” Laser & Photonics Reviews, vol. 7, no. 3, pp. 408–421, Jul. 2013.
[5] N. K. Dutta and R. J. Nelson, “The case for Auger recombination in In1−xGaxAsyP1−y,” Journal of Applied Physics, vol. 53, no. 1, pp. 74–92, 1982.
[6] A. S. Polkovnikov and G. G. Zegrya, “Auger recombination in semiconductor quantum wells,” Physical Review B, vol. 58, no. 7, pp. 4039–4056, 1998.
[7] K. T. Delaney, P. Rinke, and C. G. V. D. Walle, “Auger recombination rates in nitrides from first principles,” Applied Physics Letters, vol. 94, no. 19, p. 191109, Nov. 2009.
[8] A. David and M. J. Grundmann, “Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Applied Physics Letters, vol. 97, no. 3, p. 033501, 2010.
[9] H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, “Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material,” Applied Physics Letters, vol. 100, no. 13, p. 131109, 2012.
[10] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of Nonradiative Recombination by V-Shaped Pits inGaInN/GaNQuantum Wells Produces a Large Increase in the Light Emission Efficiency,” Physical Review Letters, vol. 95, no. 12, 2005.
[11] B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Applied Physics Letters, vol. 91, no. 18, p. 181103, 2007.
[12] X. A. Cao, Y. Yang, and H. Guo, “On the origin of efficiency roll-off in InGaN-based light-emitting diodes,” Journal of Applied Physics, vol. 104, no. 9, p. 093108, 2008.
[13] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Applied Physics Letters, vol. 94, no. 1, p. 011113, May 2009.
[14] S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, and S.-C. Wang, “Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes,” Applied Physics Letters, vol. 96, no. 23, p. 231101, Jul. 2010.
[15] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Applied Physics Letters, vol. 93, no. 12, p. 121107, 2008.
[16] J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, “Barrier effect on hole transport and carrier distribution in InGaN∕GaN multiple quantum well visible light-emitting diodes,” Applied Physics Letters, vol. 93, no. 2, p. 021102, 2008.
[17] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Applied Physics Letters, vol. 99, no. 25, p. 251115, 2011.
[18] C.-K. Li and Y.-R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs,” IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 400–407, 2012.
[19] N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes,” Applied Physics Letters, vol. 96, no. 13, p. 133502, 2010.
[20] 劉學興,”氮化銦鎵/氮化鎵藍光發光二極體效率衰退現象之改善,” 博士, 電機工程學系, 國立中央大學, 桃園縣, 2014.
[21] F. Bertazzi, M. Goano, and E. Bellotti, “Numerical analysis of indirect Auger transitions in InGaN,” Applied Physics Letters, vol. 101, no. 1, p. 011111, Feb. 2012.
[22] E. Kioupakis, Q. Yan, and C. G. V. D. Walle, “Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Applied Physics Letters, vol. 101, no. 23, p. 231107, Mar. 2012.
[23] SlideServe, piezoelectric polarization
[Online]. Available: https://www.slideserve.com/neo/piezoelectric-polarization-ppz
[24] T.-H. Wang and J.-L. Xu, “Advantage of InGaN-based light-emitting diodes with trapezoidal electron blocking layer,” Materials Science in Semiconductor Processing, vol. 29, pp. 95–101, 2015.
[25] [Online]. Available: https://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap04/chap04.htm
[26] D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, and C. Sone, “Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Applied Physics Letters, vol. 99, no. 25, p. 251115, 2011.
[27] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” Journal of Applied Physics, vol. 90, no. 8, pp. 4191–4195, 2001.
[28] L.-C. Chen, C.-Y. Hsu, W.-H. Lan, and S.-Y. Teng, “GaN-based light-emitting diodes with Ni/AuBe transparent conductive layer,” Solid-State Electronics, vol. 47, no. 10, pp. 1843–1846, 2003.
[29] K. Zhao, X. Yang, B. Xu, D. Li, C. Wang, and L. Feng, “Well Thickness Dependence of the Internal Quantum Efficiency and Carrier Concentration in GaN-Based Multiple Quantum Well Light-Emitting Diodes,” Journal of Electronic Materials, vol. 45, no. 1, pp. 786–790, 2015.
[30] S. Tanaka, Y. Zhao, I. Koslow, C.-C. Pan, H.-T. Chen, J. Sonoda, S. Denbaars, and S. Nakamura, “Droop improvement in high current range on PSS-LEDs,” Electronics Letters, vol. 47, no. 5, p. 335, 2011.
[31] Y.-K. Kuo, S.-H. Yen, and J.-R. Chen, “Numerical simulation of AlInGaN ultraviolet light-emitting diodes,” Optoelectronic Devices: Physics, Fabrication, and Application III, 2006.
[32] M. Huang and T. Lu, “Optimization of the Active-Layer Structure for the Deep-UV AlGaN Light-Emitting Diodes,” IEEE Journal of Quantum Electronics, vol. 42, no. 8, pp. 820–826, 2006.
[33] C. S. Xia, Z. M. S. Li, Z. Q. Li, Y. Sheng, Z. H. Zhang, W. Lu, and L. W. Cheng, “Optimal number of quantum wells for blue InGaN/GaN light-emitting diodes,” Applied Physics Letters, vol. 100, no. 26, p. 263504, 2012.
[34] C.-K. Li and Y.-R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs,” IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 400–407, 2012.
[35] D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Applied Physics Letters, vol. 100, no. 8, p. 081106, 2012.
[36] A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. A. Suleiman, S. Merzsch, J. Wei, S. Li, H. H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, “The nanorod approach: GaN NanoLEDs for solid state lighting,” physica status solidi (c), vol. 8, no. 7-8, pp. 2296–2301, Sep. 2011.
[37] S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Applied Physics Letters, vol. 96, no. 22, p. 221105, 2010.
[38] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Applied Physics Letters, vol. 94, no. 1, p. 011113, May 2009.
[39] H. J. Chung, R. J. Choi, M. H. Kim, J. W. Han, Y. M. Park, Y. S. Kim, H. S. Paek, C. S. Sone, Y. J. Park, J. K. Kim, and E. F. Schubert, “Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers,” Applied Physics Letters, vol. 95, no. 24, p. 241109, 2009.
[40] C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Applied Physics Letters, vol. 99, no. 17, p. 171106, 2011.
[41] Z. Li, M. Lestrade, Y. Xiao, and Z. S. Li, “Improvement of Performance in p-Side Down InGaN/GaN Light-Emitting Diodes with Graded Electron Blocking Layer,” Japanese Journal of Applied Physics, vol. 50, no. 8, p. 080212, May 2011.
[42] T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao, and Y. Zhou, “Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer,” Applied Physics Letters, vol. 100, no. 14, p. 141106, Feb. 2012.
[43] [Online]. Available: https://www.slideshare.net/houhsiting/sputter
[44] [Online]. Available: http://www.ndl.org.tw/docs/publication/24_2/pdf/E2.pdf
[45] M. Soylu and F. Yakuphanoglu, “Properties of sol–gel synthesized n-ZnO/n-GaN (0001) isotype heterojunction,” Materials Chemistry and Physics, vol. 143, no. 2, pp. 495–502, 2014.
校內:2021-09-01公開