簡易檢索 / 詳目顯示

研究生: 魏詠宗
Wei, Yung-Tsung
論文名稱: 流道親疏水界面對水流動之影響
Flow Analysis on Surface with Hydrophilicity Interface
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 表面張力親水性OTS
外文關鍵詞: hydropholicity, OTS, hydrophilicity, surface tension
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著摩爾定律之趨勢,半導體製程與微製造技術不斷進步,大量快速的批次生產技術,已成為製程之主流。然而組裝技術則仍然停留在序列式之技術,如抓放技術(pick and place)。因此,可以同步組裝大量元件之流體自我技術為近期研究發展之重點。
    由於流體自我組裝元件利用疏水性與親水性之表面性質差異,驅使具疏水性表面之元件組裝於基板上方特定之位置。本研究利用OTS進行玻璃表面之改質,使親水性玻璃之表面具有疏水性之流道,藉由流道之流場觀察,對流道親疏水界面對水流動之影響進行分析。
    實驗結果顯示,在疏水區域,疏水性之表面具有較大之表面張力,使承載水滴累積體積並提高重心,水滴與表面之接觸角必須大於最大接觸角,水滴才能流動。且疏水區域之水流流速較慢,而親水區域之水流流速較快,利用兩者之特性可製作成為微小流道,以控制水滴流向。

    Following the trend predicted by Moor’s law, the manufacturing process on semiconductor progresses continuously. The rapid mass production technology is becoming a major process in contrast to the traditional pick and place assembly techniques. Thus, the development of fluidic self-assembly (FSA) which can assemble massive small components simultaneously in parallel batches becomes more and more attractive.
    FSA is an assembly process using fluid to transport components to binding sites and the components can orient itself on the binding sites by hydrophobic interaction. This study investigates the flow features on hydrophobic surfaces glass substrates are patterned into hydrophobic regions by OTS side by side with hydrophilic regions.
    Experimental results show that on hydrophobic region, the higher surface tension increases both the height and center of gravity of water drops. It causes water drops become unstable. The contact angle of water drop must bigger the critical angle to make water drops start to flow. On hydrophobic regions, the flow speed is smaller than that on the hydrophilic regions. Thus, by a proper combination of hydrophobic and hydrophilic regions can guide flows to specific directions.

    目 錄 目錄 I 圖目錄 III 表目錄 V 第一章、緒論 ...1 1-1 前言 1 1-2 流體自我組裝之概念 2 1-3 研究動機與方法 3 1-4 論文架構 5 第二章、文獻回顧 6 2-1 物理性的流體自我組裝 6 2-2 表面毛細力之流體自我組裝 8 2-2-1 疏水性材料之流體自我組裝 8 2-2-2 單分子層塗佈之流體自我組裝 9 2-2-2-1 毫米元件結構組裝 9 2-2-2-2 元件組裝於基板之方式 10 2-2-3 疏水表面毛細力應用 11 第三章、實驗設備與方式 13 3-1 實驗設備 13 3-1-1 SONY DCR-TRV38 數位攝影機 13 3-1-2 Ching Hsing FS-1000 影像顯微鏡 13 3-2 疏水性表面之製程 13 3-3 水蒸氣對疏水性及親水性玻璃背面附著性之實驗 14 3-4 跨越疏水性及親水性水滴之流動行為 15 3-5 疏水性玻璃上水滴之流動 15 3-6 疏水性表面附有親水性流道之背面流場實驗 16 3-7 疏水性表面附有親水性流道之流場實驗 16 3-8定量水滴在傾斜角度時開始流動之實驗 18 3-9觀察疏水性玻璃上水滴之流動行為與速度之關係 18 第四章、結果與討論 20 4-1背面親水性及疏水性流場實驗 20 4-2 跨越疏水性及親水性水滴之流動行為 21 4-3 疏水性玻璃上水滴之流動微觀 23 4-4 背面疏水性之流場實驗 25 4-4-1 疏水性流道之貝面流場實驗 25 4-4-2 4X4㎜疏水性流道之背面流場實驗 27 4-5 疏水性表面附有親水性流道之流場實驗 28 4-5-1 疏水性玻璃及親水玻璃在傾斜時之流場實驗 28 4-5-2 疏水性玻璃上親水流道在傾斜時之流場實驗 29 4-6定量水滴在傾斜角度時開始流動之實驗 32 4-7 疏水性玻璃上水滴之流動行為與速度之關係 34 第五章、結論與建議 37 參考文獻 39 圖 目 錄 圖1-1 利用重力與形狀互補之自我組裝示意圖[4] 42 圖1-2 Hydrophobic interaction[2] 42 圖3-1 SONY DCR-TRV38 數位攝影機 43 圖3-2 Ching Hsing FS-1000 影像顯微鏡 43 圖3-3 傾斜平台及水蒸氣由下方蒸鍍之示意圖 44 圖3-4 疏水玻璃上之親水流道示意圖 44 圖3-5 顯微鏡由疏水性玻璃側邊觀察之示意圖 45 圖3-6 疏水玻璃上之親水流道示意圖 45 圖3-7 疏水玻璃上之親水流道示意圖 46 圖3-8 傾斜玻璃之流道實驗示意圖 46 圖3-9 疏水玻璃上之親水流道示意圖 47 圖3-10 旋轉機構轉動顯微鏡及疏水玻璃之示意圖 47 圖4-1 表面張力使水滴附著於玻璃上之水滴形狀不同 48 圖4-2 附著疏水區域水珠有較強之吸引力而不會往下流 48 圖4-3 水滴跨越親水及疏水區域水滴離開之現象 49 圖4-4 疏水玻璃上之水滴接觸角示意圖 50 圖4-5疏水玻璃上之水滴接觸角示意圖 50 圖4-6疏水玻璃上之水滴接觸角示意圖 51 圖4-7疏水玻璃上之水滴接觸角示意圖 51 圖4-8疏水性流道之背面流場圖 52 圖4-9疏水性流道之背面流場圖 53 圖4-10疏水玻璃及親水玻璃在各個角度流動70㎜之時間圖 54 圖4-11疏水玻璃及親水玻璃在各個角度流動70㎜之流動圖 55 圖4-12疏水玻璃及親水玻璃在各個角度流動70㎜之水量圖 56 圖4-13 各種流道在各個角度流動70㎜之時間圖 56 圖4-14 疏水玻璃及親水玻璃在各個角度流動70㎜之水滴寬度圖 57 圖4-15 1㎜疏水玻璃上1㎜親水流道在各個角度流動圖 58 圖4-16 3㎜疏水玻璃上1㎜親水流道在各個角度流動圖 59 圖4-17 5㎜疏水玻璃上1㎜親水流道在各個角度流動圖 60 圖4-18 7㎜疏水玻璃上1㎜親水流道在各個角度流動圖 61 圖4-19 四種流道在各個角度流動70㎜之水滴流量體積 62 圖4-20水滴在不同水量因傾斜開始流動之傾斜角度 62 表 目 錄 表4-1 不同水滴體積對各個旋轉角速度流動之現象 63 表4-2 疏水性及親水性之表面特性 36

    [1] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science, vol. 295, pp. 2418–2421, May 2002.
    [2] H. Onoe, K. Matsumoto, , and I. Shimoyama, “Three-dimensional micro-self-assembly using hydrophobic interaction controlled by self-assembled monolayers,” Journal of Microeletcromechanical Systems, vol. 13, no. 4, pp. 603–611, 2004.
    [3] J. S. Smith, “High density,low parasitic direct integration by fluidic self assembly (fsa),” Electro Devices Meeting, IEDM Technical Digest, pp. 201–204, Dec 2000.
    [4] H.-J. J. Yeh and J. S. Smith, “Fluidic self-assembly for the integration of gaas light-emitting diodes on si substrates,” IEEE Photonics Technology Letters, vol. 6, no. 6, pp. 706–708, 1994.
    [5] A. K. Verma, M. A. Hadly, H.-J. Yen, and J. S. Smith, “Fluidic self-assembly of silicon microstructures,” in Proceedings. 45th Electronic Components and Technology Conference,, (Las Vegas, NV, USA), pp. 1263–1268, May 1995.
    [6] A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature, vol. 385, pp. 321–324, January 1997.
    [7] B. Gates and Y. Xia, “Photonic crystals that can be addressed with an external magnetic field,” Advanced Material, vol. 13, no. 21, pp. 1605–1608, 2001.
    [8] A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimetre-scale components,” Nature, vol. 386, pp. 162–164, March 1996.
    [9] K. F. Böhringer, K. Goldberg, M. Cohn, R. T. Howe, and A. Pisano, “Parallel microassembly with electrostatic force field,” in Proc. 1998 IEEE Conf. Robotics Automation, Leuven, Belgium, pp. 1204–1211, May 1998.
    [10] S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilaneson silicon substrates,” Langmuir, vol. 5, pp. 1074–1087, 1989.
    [11] P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. a new method of constructingpure or mixed monolayers,” Langmuir, vol. 7, pp. 1647–1651, 1991.
    [12] H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, and G. M. Whitesides, “Fabrication of a cylindrical display by patterned assembly,” Science, vol. 296, pp. 323 -325, April 2002.
    [13] J. J. Talghader, J. K. Tu, and J. S. Smith, “Integration of fluidically self-assembled optoelectronic devices using a silicon-based process,” IEEE Photonics Technology Letters, vol. 7, pp. 1321–1323, 1995.
    [14] A. Terfort and G. M. Whitesides, “Self-assembly of an operating electrical circuit based on shape complementarity and the hydrophobic effect,” Advanced Materials, vol. 10, no. 6, pp. 470–473, 1998.
    [15] J. Tien, T. L. Breen, and G. M. Whitesides, “Crystallization of millimeter-scale objects with use of capillary forces,” Journal of the American Chemical Society, vol. 120, pp. 12670–12671, 1998.
    [16] T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, and G. M. Whitesides, “Design and self-assembly of open, regular, 3d mesostructures,” Science, vol. 284, pp. 948–951, May 1999.
    [17]D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, “Forming electrical networks in three dimensions by self-assembly,” Science, vol. 289, no. 18, pp. 1170–1172, 2000.
    [18] T. D. Clark, J. Tien, D. C. Duffy, K. E. Paul, and G. M. Whitesides, “Self-assembly of 10-micrometer-sized objects into ordered three-dimensional arrays,” Journal of the American Chemical Society, vol. 123, pp. 7677–7682, 2001.
    [19]U. Srinivasan, R. T. Howe, and D. Liepmann, “Fluidic microassembly using patterned self-assembled monolayers and shape matching,” in Proc. 1999 Int. Conf. on Solid-State Sensors and Actuators, pp. 1170–1173, June 7-10 1999.
    [20] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary forces,” Journal of Microeletcromechanical Systems, vol. 10, no. 1, pp. 17–24, 2001.
    [21] U. Srinivasan, M. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirrors onto surface micromachined actuators,” in IEEE/LEOS International Conference on Optical MEMS, pp. 59–60, August 2000.
    [22] U. Srinivasan, M. A. Helmbrecht, C. Rembe, R. S. Muller, and R. T. Howe, “Fluidic self-assembly of micromirrors onto microactuators using capillary forces,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, January 2002.
    [23] X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multi-batch self-assembly of micro devices,” tech. rep., Department of Electrical Engineering, University of Washington, Box 352500 Seattle, Washington 98195-2500, 2002.
    [24] X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multibatch self-assembly of microdevices,” Journal of Microelectromechanical Systems, vol. 12, pp. 117–127, april 2003.
    [25] D. H. Gracias, V. Kavthekar, J. C. Love, K. E. Paul, and G. M. Whitesides, “Fabrication of micrometer-scale, patterned polyhedra by self-assembly,” Advanced Materials, vol. 14, pp. 235–238, February 2002.
    [26] I. T. H. M. Karen L. Scott, Member, H. Yang, H. Singh, R. T. Howe, and A. M. Niknejad, “High-performance inductors using capillary based fluidic self-assembly,” Journal of Microelectromechanical Systems, vol. 13, pp. 300–309, April 2004.
    [27] X. Xiong, K. Wang, and K. F. Böhringer, “From micro-patterns to nano-structures by controllable colloidal aggregation at air-water interface,” in IEEE International Conference on Micro Electro Mechanical Systems(MEMS’04), pp. 621–624, 2004.

    下載圖示 校內:2007-08-21公開
    校外:2007-08-21公開
    QR CODE