| 研究生: |
張育豪 Chang, Yu-Hao |
|---|---|
| 論文名稱: |
探討TG-interacting factor 1 於脂肪細胞分化中的角色 Elucidating the function of TG-interacting factor 1 in adipogenesis |
| 指導教授: |
黃暉升
Huang, Huei-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 肥胖 、脂肪細胞分化 、TGIF1 、p27kip1 |
| 外文關鍵詞: | Obesity, Adipogenesis, TGIF1, p27kip1 |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖及其相關代謝性症候群包含糖尿病、高血壓、心血管疾病甚至癌症的發展對於現今社會中帶來龐大的健康、經濟負擔。其中異常、不健康的脂肪細胞的擴張與肥胖的發展息息相關,脂肪細胞擴張主要包含兩個步驟: 新生脂肪細胞的分化、成熟脂肪細胞的肥大。TG-interacting factor 1 (TGIF1)在先前研究報導被指出在小鼠前驅脂肪細胞或是人類脂肪源幹細胞的分化中具有必須的角色,此外,在高油脂飲食誘導肥胖的老鼠模型脂肪組織GEO dataset中,也能觀察到脂肪組織中tgif1 mRNA表達的上升。雖然在上述研究中發現TGIF1在脂肪細胞中佔有重要的角色,但詳細機制至今仍尚未釐清。因此在本研究中,我們首先驗證在高油脂飲食誘導肥胖的老鼠模型脂肪進行組織中觀察到TGIF1蛋白質及mRNA表現量證實有明顯增加之現象,並進一步利用TGIF1過度表達或剔除的3T3-F442A前驅脂肪細胞株並發現TGIF1在脂肪細胞分化早期中具有重要的角色,且主要透過Insulin/ERK路徑來磷酸化TGIF1 蛋白質Threonine 235及239位點增加其蛋白質穩定性,並於脂肪細胞分化早期透過活化C/EBPβ promoter、藉由PPARγ response element抑制p27kip1表現、促進cell cycle的進程來參與在脂肪細胞分化過程中的mitotic clonal expansion,進而加強脂肪細胞的分化。因此,希望透過了解此脂肪細胞分化機制在未來能夠提供在肥胖相關疾病治療中的一個治療標的。
Obesity and its related metabolic syndromes, including diabetes, hypertension, cardiovascular diseases, and even cancers, bring significant health and economic burdens on modern society. The abnormal and unhealthy adipocytes expansion is closely associated with obesity, involving two main steps in adipocyte expansion: the differentiation of newly formed adipocytes and the hypertrophy of mature adipocytes. Previous studies have highlighted the essential roles of TG-interacting factor 1 (TGIF1) in the differentiation of murine preadipocytes or human adipose-derived stem cells. Additionally, an increase in tgif1 mRNA expression has been observed in adipose tissue from mouse models of high-fat diet-induced obesity GEO datasets. Although the importance of TGIF1 in adipocytes has been recognized in these studies, the detailed mechanisms remain unclear. Therefore, in our present study, we validated a significant increase in protein and mRNA expression of TGIF1 in adipose tissue from mouse models of high-fat diet-induced obesity. Subsequently, we employed 3T3-F442A preadipocytes with overexpression or knockout of TGIF1 and revealed its crucial roles in the early stages of adipocyte differentiation. This process is primarily mediated by insulin/ERK pathway-induced phosphorylation of TGIF1 protein at threonine 235 and 239, which enhance its protein stability. Furthermore, TGIF1 participates in mitotic clonal expansion by activating the C/EBPβ promoter, suppressing p27kip1 expression through PPARγ response elements, and promoting cell cycle progression, thereby enhancing adipocyte differentiation. Therefore, modulating TGIF1 expression in adipocytes may provide promising therapeutic targets for obesity-related diseases.
[1] Blüher, M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 15(5), 288-298. 2019
[2] HealthPromotionAdministration(HPA). Nutrition and Health Survey in Taiwan. 2022
[3] Lin, X. and Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 12, 706978. 2021
[4] Hepler, C. and Gupta, R.K. The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. Mol Cell Endocrinol. 445, 95-108. 2017
[5] Rohm, T.V., Meier, D.T., Olefsky, J.M. and Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity. 55(1), 31-55. 2022
[6] Ghaben, A.L. and Scherer, P.E. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 20(4), 242-258. 2019
[7] Haczeyni, F., Bell-Anderson, K.S. and Farrell, G.C. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 19(3), 406-420. 2018
[8] Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G.A., Beguinot, F. and Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 20(9)2019
[9] Gustafson, B., Gogg, S., Hedjazifar, S., Jenndahl, L., Hammarstedt, A. and Smith, U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab. 297(5), E999-e1003. 2009
[10] Muir, L.A., Neeley, C.K., Meyer, K.A., Baker, N.A., Brosius, A.M., Washabaugh, A.R., Varban, O.A., Finks, J.F., Zamarron, B.F., Flesher, C.G., Chang, J.S., DelProposto, J.B., Geletka, L., Martinez-Santibanez, G., Kaciroti, N., Lumeng, C.N. and O'Rourke, R.W. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring). 24(3), 597-605. 2016
[11] Tang, Q.Q. and Lane, M.D. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 81, 715-36. 2012
[12] Chang, E. and Kim, C.Y. Natural Products and Obesity: A Focus on the Regulation of Mitotic Clonal Expansion during Adipogenesis. Molecules. 24(6)2019
[13] Tang, Q.Q., Otto, T.C. and Lane, M.D. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A. 100(1), 44-9. 2003
[14] Guo, L., Li, X. and Tang, Q.Q. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem. 290(2), 755-61. 2015
[15] Yu, H.S., Kim, W.J., Bae, W.Y., Lee, N.K. and Paik, H.D. Inula britannica Inhibits Adipogenesis of 3T3-L1 Preadipocytes via Modulation of Mitotic Clonal Expansion Involving ERK 1/2 and Akt Signaling Pathways. Nutrients. 12(10)2020
[16] Luo, C., Zhou, S., Zhou, Z., Liu, Y., Yang, L., Liu, J., Zhang, Y., Li, H., Liu, Y., Hou, F.F. and Zhou, L. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. J Am Soc Nephrol. 29(4), 1238-1256. 2018
[17] Wang, L., Xu, S., Lee, J.E., Baldridge, A., Grullon, S., Peng, W. and Ge, K. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. Embo j. 32(1), 45-59. 2013
[18] Li, S.F., Guo, L., Qian, S.W., Liu, Y., Zhang, Y.Y., Zhang, Z.C., Zhao, Y., Shou, J.Y., Tang, Q.Q. and Li, X. G9a is transactivated by C/EBPβ to facilitate mitotic clonal expansion during 3T3-L1 preadipocyte differentiation. Am J Physiol Endocrinol Metab. 304(9), E990-8. 2013
[19] Zhao, M.L., Rabiee, A., Kovary, K.M., Bahrami-Nejad, Z., Taylor, B. and Teruel, M.N. Molecular Competition in G1 Controls When Cells Simultaneously Commit to Terminally Differentiate and Exit the Cell Cycle. Cell Reports. 31(11), 107769. 2020
[20] Zhang, J.W., Klemm, D.J., Vinson, C. and Lane, M.D. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J Biol Chem. 279(6), 4471-8. 2004
[21] Park, B.H., Qiang, L. and Farmer, S.R. Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol. 24(19), 8671-80. 2004
[22] Tang, Q.Q., Grønborg, M., Huang, H., Kim, J.W., Otto, T.C., Pandey, A. and Lane, M.D. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci U S A. 102(28), 9766-71. 2005
[23] Tang, Q.Q., Otto, T.C. and Lane, M.D. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A. 100(3), 850-5. 2003
[24] Zhang, J.W., Tang, Q.Q., Vinson, C. and Lane, M.D. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A. 101(1), 43-7. 2004
[25] Zhang, Y.Y., Li, X., Qian, S.W., Guo, L., Huang, H.Y., He, Q., Liu, Y., Ma, C.G. and Tang, Q.Q. Transcriptional activation of histone H4 by C/EBPβ during the mitotic clonal expansion of 3T3-L1 adipocyte differentiation. Mol Biol Cell. 22(13), 2165-74. 2011
[26] Guo, L., Li, X., Huang, J.X., Huang, H.Y., Zhang, Y.Y., Qian, S.W., Zhu, H., Zhang, Y.D., Liu, Y., Liu, Y., Wang, K.K. and Tang, Q.Q. Histone demethylase Kdm4b functions as a co-factor of C/EBPβ to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell death and differentiation. 19(12), 1917-1927. 2012
[27] Lefterova, M.I., Haakonsson, A.K., Lazar, M.A. and Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab. 25(6), 293-302. 2014
[28] Ahmadian, M., Suh, J.M., Hah, N., Liddle, C., Atkins, A.R., Downes, M. and Evans, R.M. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 19(5), 557-66. 2013
[29] Koga, H., Harada, M., Ohtsubo, M., Shishido, S., Kumemura, H., Hanada, S., Taniguchi, E., Yamashita, K., Kumashiro, R., Ueno, T. and Sata, M. Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 37(5), 1086-96. 2003
[30] Aiello, A., Pandini, G., Frasca, F., Conte, E., Murabito, A., Sacco, A., Genua, M., Vigneri, R. and Belfiore, A. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology. 147(9), 4463-75. 2006
[31] Li, S., Zhou, Q., He, H., Zhao, Y. and Liu, Z. Peroxisome proliferator-activated receptor γ agonists induce cell cycle arrest through transcriptional regulation of Kruppel-like factor 4 (KLF4). J Biol Chem. 288(6), 4076-84. 2013
[32] Tzameli, I., Fang, H., Ollero, M., Shi, H., Hamm, J.K., Kievit, P., Hollenberg, A.N. and Flier, J.S. Regulated production of a peroxisome proliferator-activated receptor-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J Biol Chem. 279(34), 36093-102. 2004
[33] Hallenborg, P., Petersen, R.K., Feddersen, S., Sundekilde, U., Hansen, J.B., Blagoev, B., Madsen, L. and Kristiansen, K. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation. J Lipid Res. 55(12), 2491-500. 2014
[34] Lo, R.S., Wotton, D. and Massague, J. Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. Embo j. 20(1-2), 128-36. 2001
[35] Wotton, D., Knoepfler, P.S., Laherty, C.D., Eisenman, R.N. and Massague, J. The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ. 12(9), 457-63. 2001
[36] Bartholin, L., Powers, S.E., Melhuish, T.A., Lasse, S., Weinstein, M. and Wotton, D. TGIF inhibits retinoid signaling. Mol Cell Biol. 26(3), 990-1001. 2006
[37] Melhuish, T.A. and Wotton, D. The interaction of the carboxyl terminus-binding protein with the Smad corepressor TGIF is disrupted by a holoprosencephaly mutation in TGIF. J Biol Chem. 275(50), 39762-6. 2000
[38] Gripp, K.W., Wotton, D., Edwards, M.C., Roessler, E., Ades, L., Meinecke, P., Richieri-Costa, A., Zackai, E.H., Massagué, J., Muenke, M. and Elledge, S.J. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet. 25(2), 205-8. 2000
[39] Mar, L. and Hoodless, P.A. Embryonic fibroblasts from mice lacking Tgif were defective in cell cycling. Mol Cell Biol. 26(11), 4302-10. 2006
[40] Yan, L., Womack, B., Wotton, D., Guo, Y., Shyr, Y., Davé, U., Li, C., Hiebert, S., Brandt, S. and Hamid, R. Tgif1 regulates quiescence and self-renewal of hematopoietic stem cells. Mol Cell Biol. 33(24), 4824-33. 2013
[41] Liu, Z.M., Tseng, H.Y., Tsai, H.W., Su, F.C. and Huang, H.S. Transforming growth factor beta-interacting factor-induced malignant progression of hepatocellular carcinoma cells depends on superoxide production from Nox4. Free Radic Biol Med. 84, 54-64. 2015
[42] Yeh, B.W., Li, W.M., Li, C.C., Kang, W.Y., Huang, C.N., Hour, T.C., Liu, Z.M., Wu, W.J. and Huang, H.S. Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor. Toxicol Appl Pharmacol. 290, 98-106. 2016
[43] Zhang, J., Zhang, F., Fan, J. and Feng, B. TGIF1 Knockdown Inhibits the Proliferation and Invasion of Gastric Cancer via AKT Signaling Pathway. Cancer Manag Res. 13, 2603-2612. 2021
[44] Wang, Y., Pan, T., Li, L., Wang, H., Li, J., Zhang, D. and Yang, H. Knockdown of TGIF attenuates the proliferation and tumorigenicity of EC109 cells and promotes cisplatin-induced apoptosis. Oncol Lett. 14(6), 6519-6524. 2017
[45] Hamid, R. and Brandt, S.J. Transforming growth-interacting factor (TGIF) regulates proliferation and differentiation of human myeloid leukemia cells. Mol Oncol. 3(5-6), 451-63. 2009
[46] Wang, J.L., Qi, Z., Li, Y.H., Zhao, H.M., Chen, Y.G. and Fu, W. TGFbeta induced factor homeobox 1 promotes colorectal cancer development through activating Wnt/beta-catenin signaling. Oncotarget. 8(41), 70214-70225. 2017
[47] Wotton, D. and Taniguchi, K. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly. Am J Med Genet C Semin Med Genet. 178(2), 128-139. 2018
[48] Bertolino, E., Reimund, B., Wildt-Perinic, D. and Clerc, R.G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 270(52), 31178-88. 1995
[49] Wotton, D., Lo, R.S., Lee, S. and Massagué, J. A Smad transcriptional corepressor. Cell. 97(1), 29-39. 1999
[50] Guca, E., Suñol, D., Ruiz, L., Konkol, A., Cordero, J., Torner, C., Aragon, E., Martin-Malpartida, P., Riera, A. and Macias, M.J. TGIF1 homeodomain interacts with Smad MH1 domain and represses TGF-β signaling. Nucleic Acids Res. 46(17), 9220-9235. 2018
[51] Pramfalk, C., Eriksson, M. and Parini, P. Role of TG-interacting factor (Tgif) in lipid metabolism. Biochim Biophys Acta. 1851(1), 9-12. 2015
[52] Melhuish, T.A., Chung, D.D., Bjerke, G.A. and Wotton, D. Tgif1 represses apolipoprotein gene expression in liver. J Cell Biochem. 111(2), 380-90. 2010
[53] Pramfalk, C., Melhuish, T.A., Wotton, D., Jiang, Z.Y., Eriksson, M. and Parini, P. TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2. J Lipid Res. 55(4), 709-17. 2014
[54] Horie, T., Ono, K., Kinoshita, M., Nishi, H., Nagao, K., Kawamura, T., Abe, Y., Wada, H., Shimatsu, A., Kita, T. and Hasegawa, K. TG-interacting factor is required for the differentiation of preadipocytes. J Lipid Res. 49(6), 1224-34. 2008
[55] Sparks, R.L., Allen, B.J. and Strauss, E.E. TGF-beta blocks early but not late differentiation-specific gene expression and morphologic differentiation of 3T3 T proadipocytes. J Cell Physiol. 150(3), 568-77. 1992
[56] Choy, L., Skillington, J. and Derynck, R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol. 149(3), 667-82. 2000
[57] Choy, L. and Derynck, R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem. 278(11), 9609-19. 2003
[58] Li, S., Zhang, H.Y., Hu, C.C., Lawrence, F., Gallagher, K.E., Surapaneni, A., Estrem, S.T., Calley, J.N., Varga, G., Dow, E.R. and Chen, Y. Assessment of diet-induced obese rats as an obesity model by comparative functional genomics. Obesity (Silver Spring). 16(4), 811-8. 2008
[59] Kwon, E.Y., Shin, S.K., Cho, Y.Y., Jung, U.J., Kim, E., Park, T., Park, J.H., Yun, J.W., McGregor, R.A., Park, Y.B. and Choi, M.S. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics. 13, 450. 2012
[60] Hneino, M., Blirando, K., Buard, V., Tarlet, G., Benderitter, M., Hoodless, P., Francois, A. and Milliat, F. The TG-interacting factor TGIF1 regulates stress-induced proinflammatory phenotype of endothelial cells. J Biol Chem. 287(46), 38913-21. 2012
[61] Liu, Z.M. and Huang, H.S. Arsenic trioxide phosphorylates c-Fos to transactivate p21(WAF1/CIP1) expression. Toxicol Appl Pharmacol. 233(2), 297-307. 2008
[62] Morrison, R.F. and Farmer, S.R. Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem. 274(24), 17088-97. 1999
[63] Chandra, V., Huang, P., Hamuro, Y., Raghuram, S., Wang, Y., Burris, T.P. and Rastinejad, F. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature. 456(7220), 350-6. 2008
[64] Li, Y., Kovach, A., Suino-Powell, K., Martynowski, D. and Xu, H.E. Structural and biochemical basis for the binding selectivity of peroxisome proliferator-activated receptor gamma to PGC-1alpha. J Biol Chem. 283(27), 19132-9. 2008
[65] Sue, Y.M., Chung, C.P., Lin, H., Chou, Y., Jen, C.Y., Li, H.F., Chang, C.C. and Juan, S.H. PPARdelta-mediated p21/p27 induction via increased CREB-binding protein nuclear translocation in beraprost-induced antiproliferation of murine aortic smooth muscle cells. Am J Physiol Cell Physiol. 297(2), C321-9. 2009
[66] Jeoung, D.I., Tang, B. and Sonenberg, M. Mitogenic response to TGF-beta in 3T3-F442A cells. Biochem Biophys Res Commun. 216(3), 964-9. 1995
[67] Agrawal, P., Fontanals-Cirera, B., Sokolova, E., Jacob, S., Vaiana, C.A., Argibay, D., Davalos, V., McDermott, M., Nayak, S., Darvishian, F., Castillo, M., Ueberheide, B., Osman, I., Fenyö, D., Mahal, L.K. and Hernando, E. A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell. 31(6), 804-819.e7. 2017
[68] Prusty, D., Park, B.H., Davis, K.E. and Farmer, S.R. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem. 277(48), 46226-32. 2002
[69] Chung, S.S., Ahn, B.Y., Kim, M., Choi, H.H., Park, H.S., Kang, S., Park, S.G., Kim, Y.B., Cho, Y.M., Lee, H.K., Chung, C.H. and Park, K.S. Control of adipogenesis by the SUMO-specific protease SENP2. Mol Cell Biol. 30(9), 2135-46. 2010
[70] Newell, F.S., Su, H., Tornqvist, H., Whitehead, J.P., Prins, J.B. and Hutley, L.J. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. Faseb j. 20(14), 2615-7. 2006
[71] Lee, S.Y., Lim, J., Khang, G., Son, Y., Choung, P.H., Kang, S.S., Chun, S.Y., Shin, H.I., Kim, S.Y. and Park, E.K. Enhanced ex vivo expansion of human adipose tissue-derived mesenchymal stromal cells by fibroblast growth factor-2 and dexamethasone. Tissue Eng Part A. 15(9), 2491-9. 2009
[72] Park, J.R., Jung, J.W., Seo, M.S., Kang, S.K., Lee, Y.S. and Kang, K.S. DNER modulates adipogenesis of human adipose tissue-derived mesenchymal stem cells via regulation of cell proliferation. Cell Prolif. 43(1), 19-28. 2010
[73] Björk, C., Subramanian, N., Liu, J., Acosta, J.R., Tavira, B., Eriksson, A.B., Arner, P. and Laurencikiene, J. An RNAi Screening of Clinically Relevant Transcription Factors Regulating Human Adipogenesis and Adipocyte Metabolism. Endocrinology. 162(7)2021
[74] Lee, Y.H., Nair, S., Rousseau, E., Allison, D.B., Page, G.P., Tataranni, P.A., Bogardus, C. and Permana, P.A. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia. 48(9), 1776-83. 2005
[75] Arner, E., Mejhert, N., Kulyté, A., Balwierz, P.J., Pachkov, M., Cormont, M., Lorente-Cebrián, S., Ehrlund, A., Laurencikiene, J., Hedén, P., Dahlman-Wright, K., Tanti, J.F., Hayashizaki, Y., Rydén, M., Dahlman, I., van Nimwegen, E., Daub, C.O. and Arner, P. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 61(8), 1986-93. 2012
[76] Sárvári, A.K., Van Hauwaert, E.L., Markussen, L.K., Gammelmark, E., Marcher, A.B., Ebbesen, M.F., Nielsen, R., Brewer, J.R., Madsen, J.G.S. and Mandrup, S. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab. 33(2), 437-453.e5. 2021
[77] Liao, X., Zeng, Q., Xie, L., Zhang, H., Hu, W., Xiao, L., Zhou, H., Wang, F., Xie, W., Song, J., Sun, X., Wang, D., Ding, Y., Jiao, Y., Mai, W., Aini, W., Hui, X., Liu, W., Hsueh, W.A. and Deng, T. Adipose stem cells control obesity-induced T cell infiltration into adipose tissue. Cell Rep. 43(3), 113963. 2024
[78] Bost, F., Aouadi, M., Caron, L. and Binétruy, B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie. 87(1), 51-6. 2005
[79] Delmas, C., Aragou, N., Poussard, S., Cottin, P., Darbon, J.M. and Manenti, S. MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. J Biol Chem. 278(14), 12443-51. 2003
[80] Gysin, S., Lee, S.H., Dean, N.M. and McMahon, M. Pharmacologic inhibition of RAF-->MEK-->ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res. 65(11), 4870-80. 2005
[81] Banks, A.S., McAllister, F.E., Camporez, J.P., Zushin, P.J., Jurczak, M.J., Laznik-Bogoslavski, D., Shulman, G.I., Gygi, S.P. and Spiegelman, B.M. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 517(7534), 391-5. 2015
[82] Ozaki, K.I., Awazu, M., Tamiya, M., Iwasaki, Y., Harada, A., Kugisaki, S., Tanimura, S. and Kohno, M. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrinol Metab. 310(8), E643-e651. 2016
[83] Surmi, B.K. and Hasty, A.H. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol. 3(5), 545-556. 2008
[84] Cawthorn, W.P. and Sethi, J.K. TNF-α and adipocyte biology. FEBS Letters. 582(1), 117-131. 2008
[85] Ito, A., Suganami, T., Miyamoto, Y., Yoshimasa, Y., Takeya, M., Kamei, Y. and Ogawa, Y. Role of MAPK phosphatase-1 in the induction of monocyte chemoattractant protein-1 during the course of adipocyte hypertrophy. J Biol Chem. 282(35), 25445-52. 2007
[86] Kabir, S.M., Lee, E.S. and Son, D.S. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte. 3(2), 97-106. 2014
[87] Greenberg, A.S., Shen, W.J., Muliro, K., Patel, S., Souza, S.C., Roth, R.A. and Kraemer, F.B. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 276(48), 45456-61. 2001
[88] Ge, M., Guo, R., Lou, H.X. and Zhang, W. Extract of Paecilomyces hepiali mycelia induces lipolysis through PKA-mediated phosphorylation of hormone-sensitive lipase and ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes. BMC Complement Altern Med. 18(1), 326. 2018
[89] Liu, L.R., Lin, S.P., Chen, C.C., Chen, Y.J., Tai, C.C., Chang, S.C., Juang, R.H., Tseng, Y.W., Liu, B.H., Mersmann, H.J., Shen, T.L. and Ding, S.T. Serum amyloid A induces lipolysis by downregulating perilipin through ERK1/2 and PKA signaling pathways. Obesity (Silver Spring). 19(12), 2301-9. 2011
[90] Reichlmeir, M., Elias, L. and Schulte, D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol. 9, 648765. 2021
[91] Ettahar, A., Ferrigno, O., Zhang, M.Z., Ohnishi, M., Ferrand, N., Prunier, C., Levy, L., Bourgeade, M.F., Bieche, I., Romero, D.G., Colland, F. and Atfi, A. Identification of PHRF1 as a tumor suppressor that promotes the TGF-β cytostatic program through selective release of TGIF-driven PML inactivation. Cell Rep. 4(3), 530-41. 2013
[92] Demange, C., Ferrand, N., Prunier, C., Bourgeade, M.F. and Atfi, A. A model of partnership co-opted by the homeodomain protein TGIF and the Itch/AIP4 ubiquitin ligase for effective execution of TNF-alpha cytotoxicity. Mol Cell. 36(6), 1073-85. 2009
[93] Mistry, D.S., Tsutsumi, R., Fernandez, M., Sharma, S., Cardenas, S.A., Lawson, M.A. and Webster, N.J. Gonadotropin-releasing hormone pulse sensitivity of follicle-stimulating hormone-beta gene is mediated by differential expression of positive regulatory activator protein 1 factors and corepressors SKIL and TGIF1. Mol Endocrinol. 25(8), 1387-403. 2011
[94] Parajuli, P., Singh, P., Wang, Z., Li, L., Eragamreddi, S., Ozkan, S., Ferrigno, O., Prunier, C., Razzaque, M.S., Xu, K. and Atfi, A. TGIF1 functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Embo j. 38(13), e101067. 2019
[95] Bengoechea-Alonso, M.T. and Ericsson, J. Tumor suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for degradation. Oncogene. 29(38), 5322-8. 2010
[96] Godemann, R., Biernat, J., Mandelkow, E. and Mandelkow, E.M. Phosphorylation of tau protein by recombinant GSK-3beta: pronounced phosphorylation at select Ser/Thr-Pro motifs but no phosphorylation at Ser262 in the repeat domain. FEBS Lett. 454(1-2), 157-64. 1999
[97] Sharfi, H. and Eldar-Finkelman, H. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab. 294(2), E307-15. 2008
[98] Chu, B., Soncin, F., Price, B.D., Stevenson, M.A. and Calderwood, S.K. Sequential Phosphorylation by Mitogen-activated Protein Kinase and Glycogen Synthase Kinase 3 Represses Transcriptional Activation by Heat Shock Factor-1*. Journal of Biological Chemistry. 271(48), 30847-30857. 1996
[99] Brady, M.J., Bourbonais, F.J. and Saltiel, A.R. The Activation of Glycogen Synthase by Insulin Switches from Kinase Inhibition to Phosphatase Activation during Adipogenesis in 3T3-L1 Cells*. Journal of Biological Chemistry. 273(23), 14063-14066. 1998
[100] Pal, R., Bondar, V.V., Adamski, C.J., Rodney, G.G. and Sardiello, M. Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis. Scientific Reports. 7(1), 4174. 2017
[101] Aiston, S., Coghlan, M.P. and Agius, L. Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Eur J Biochem. 270(13), 2773-81. 2003
[102] Woodard, C., Liao, G., Goodwin, C.R., Hu, J., Xie, Z., Dos Reis, T.F., Newman, R., Rho, H., Qian, J., Zhu, H. and Hayward, S.D. A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP. J Virol. 89(18), 9232-41. 2015
[103] Ren, D., Collingwood, T.N., Rebar, E.J., Wolffe, A.P. and Camp, H.S. PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev. 16(1), 27-32. 2002
校內:2029-07-04公開