| 研究生: |
楊舒博 Yang, Shu-Bo |
|---|---|
| 論文名稱: |
具多管式的同心圓型薄膜甲醇重組器之設計、建模與優化 Design, Modelling, and Optimization of a Multi-Tube Annular Membrane Methanol Reformer |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 氫氣 、甲醇蒸氣重組 、甲醇重組器 、模擬 、靈敏度分析 、優化 、gPROMS® |
| 外文關鍵詞: | Hydrogen, Methanol steam reforming, Methanol reformer, Simulation, Sensitivity analysis, Optimization, gPROMS® |
| 相關次數: | 點閱:154 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個用來產氫且具有原料預熱系統的多管式同心圓型薄膜甲醇重組器(Multi-Tube Annular Membrane Methanol Reformer, MTAMMR)的概念設計。一個MTAMMR是由多個同心圓型薄膜甲醇重組器(Annular Membrane Methanol Reformer, AMMR)所組成。MTAMMR中的AMMR都是相同尺寸的,並且在相同的操作條件下進行產氫。MTAMMR被設計成供應2016 Toyota Mirai中的質子交換膜燃料電池的氫氣需求。同時,因為儲存甲醇比儲存氫氣在車輛上的應用更具有方便性、穩定性與安全性,吾等也想估計用MTAMMR取代Toyata Mirai中的儲氫槽的可行性。
MTAMMR的建模是通過一款專業化工模擬軟體─gPROMS®來完成。在本研究中,數學模型中所有的統御方程式皆由gPROMS®的模型建構器完成計算,而熱力學計算則是由gPROMS®中的輔助軟體─Multiflash®來完成。而所有的優化運算,都是由gPROMS®的優化工具中的非線性漸進式二次規劃(NLPSQP)演算法來完成
在同心圓型薄膜甲醇重組器(Annular Membrane Methanol Reformer, AMMR)與沒有配置薄膜的同心圓型甲醇重組器(Annular Methanol Reformer, AMR)的比較中顯示,不論在何種操作條件下,AMMR的總氫氣生產率與甲醇轉化率都高於AMR。相較於AMR,AMMR有更好的產氫性能,且不需要再配置額外的氫氣純化單元,所以產氫系統的整體規模可以被顯著地縮小。因此,相較於AMR ,AMMR比較適合應用於供應Toyata Mirai的氫氣消耗。
靈敏度分析被採用來了解操作變量(如進料速率、內管直徑等)與氫氣生產表現(氫氣滲透速率、氫氣回收率和總氫氣生產速率)間的關係。為了釐清操作變量對產氫表現的影響,靈敏度分析背後的機制,在本研究中有被詳細地分析。
最後,本研究中的優化計算,是為了實現MTAMMR達到最輕量化與其預熱系統達到最節能之設計來供應Toyota Mirai的氫氣消耗。根據MTAMMR的優化計算結果,使用MTAMMR來取代Toyata Mirai中的儲氫罐是可行的。
This study presented the conceptual design of a multi-tube annular membrane methanol reformer (MTAMMR) with raw material preheating system for hydrogen production. The MTAMMR is composed of several annular membrane methanol reformers (AMMRs). All the AMMRs in the MTAMMR are in the same specification and operated under the same operating conditions for H2 production. The MTAMMR is designed for supplying the H2 consumption of the proton exchange membrane fuel cell (PEMFC) in the fuel cell vehicle named 2016 Toyota Mirai. Also, because the methanol storage is more convenient, stable and safe than the H2 storage for the vehicle application, the authors wanted to estimate the feasibility of replacing the hydrogen tank in the Toyota Mirai by the MTAMMR.
The MTAMMR is modeled by using a professional chemical engineering software named gPROMS®. The governing equations of the mathematical model in this research are calculated by the model builder in gPROMS® and the thermodynamic calculations are approached by using the auxiliary software in gPROMS®, namely Multiflash®. All the optimization calculations in this study are completed by employing the optimization tool in gPROMS® with the efficient nonlinear sequential quadratic programming (NLPSQP) algorithm.
The comparison of the annular methanol reformer (AMR) and the annular membrane methanol reformer (AMMR) which is not equipped with the membrane shows that the total hydrogen production rate and methanol conversion of the AMMR are higher than those of the AMR with respect to different manipulated variables. Compared to the AMR, the AMMR has the better hydrogen production performance and the additional hydrogen purification unit is not required, so the overall size of the hydrogen production system can be reduced significantly. Therefore, compared to the AMR, the AMMR is more suitable for supplying the hydrogen consumption of Toyota Mirai.
The sensitivity analyses are adopted for understanding the relationship between the manipulated variables (feed rate of raw materials, size of the inner tube diameter, and so on) and the H2 production performance (H2 permeation rate through the Pd-Cu membrane, H2 recovery yield rate, and the total H2 production rate). The mechanisms behind the results of the sensitivity analyses are analyzed in details for clarifying the impact of the manipulated variables on the H2 production performance.
Finally, the optimization in this study is to achieve the lightest MTAMMR and the most energy-saving raw material preheating system for supplying the H2 consumption of Toyota Mirai. Based on the optimization results, replacing the hydrogen tank in Toyota Mirai by the MTAMMR is feasible.
Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 39(1), 1-12.
Augustine, A. S. (2013). Supported Pd and Pd/Alloy Membranes for Water-Gas Shift Catalytic Membrane Reactors.
Australia, A. S. (2002). Stainless Steel High Temperature Resistance.
Avgouropoulos, G., Papavasiliou, J., & Ioannides, T. (2008). PROX reaction over CuO-CeO2 catalyst with reformate gas containing methanol. Catalysis Communications, 9(7), 1656-1660.
Barbieri, G., Scura, F., & Drioli, E. (2006). Equilibrium of a Pd-based membrane reactor. Desalination, 200(1-3), 679-680.
Basile, A., Iulianelli, A., Longo, T., Liguori, S., & De Falco, M. (2011). Pd-based selective membrane state-of-the-art Membrane reactors for hydrogen production processes (pp. 21-55): Springer.
Boudart, M., & Hwang, H. (1975). Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 39(1), 44-52.
Cavani, F., & Trifiro, F. (1995). Alternative processes for the production of styrene. Applied Catalysis A: General, 133(2), 219-239.
Champagnie, A. M., Tsotsis, T. T., Minet, R. G., & Wagner, E. (1992). The study of ethane dehydrogenation in a catalytic membrane reactor. Journal of Catalysis, 134(2), 713-730.
Choi, K.-S., Choi, I.-J., Hwang, S.-j., Kim, H.-M., Dorr, J. L., & Erickson, P. A. (2010). An experimental study of methanol autothermal reformation as a method of producing hydrogen for transportation applications. International Journal of Hydrogen Energy, 35(12), 6210-6217.
Choi, K.-S., Kim, H.-M., Dorr, J. L., Yoon, H. C., & Erickson, P. A. (2008). Equilibrium model validation through the experiments of methanol autothermal reformation. International Journal of Hydrogen Energy, 33(23), 7039-7047.
Collins, J. P., & Way, J. D. (1993). Preparation and characterization of a composite palladium-ceramic membrane. Industrial & Engineering Chemistry Research, 32(12), 3006-3013.
Cui, W., Li, L., Jen, T.-C., Chen, Q., & Liao, Q. (2005). Numerical Simulation of Steam Reforming of Methanol in Micro-Channel Reactor. Paper presented at the ASME 2005 International Mechanical Engineering Congress and Exposition.
De Falco, M., Marrelli, L., & Iaquaniello, G. Membrane reactors for hydrogen production processes (Vol. 264): Springer.
Dewatwal, J. (2009). Design of compact plate fin heat exchanger. National Institute of Technology Rourkela.
Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954-1971.
Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094-11111.
Djinovic, P., Batista, J., Cehic, B., & Pintar, A. (2010). Utilization of High Specific Surface Area CuO-CeO2 Catalysts for High Temperature Processes of Hydrogen Production: Steam Re-forming of Ethanol and Methane Dry Re-forming. Journal of Physical Chemistry A, 114(11), 3939-3949.
Fogler, H. S. (1999). Elements of chemical reaction engineering.
Fu, C. H., & Wu, J. C. S. (2007). Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. International Journal of Hydrogen Energy, 32(18), 4830-4839.
Grace, J. R., Li, X., & Lim, C. J. (2001). Equilibrium modelling of catalytic steam reforming of methane in membrane reactors with oxygen addition. Catalysis Today, 64(3), 141-149.
Green Hydrotec, i. Ultra - high purity hydrogen supply.
Gregory, E. J. (1984). Plate fin heat exchanger: Google Patents.
Han, J., Kim, I.-s., & Choi, K.-S. (2000). Purifier-integrated methanol reformer for fuel cell vehicles. Journal of Power Sources, 86(1), 223-227.
Heinzel, A., Vogel, B., & Hübner, P. (2002). Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems. Journal of Power Sources, 105(2), 202-207.
Hoang, D., Chan, S., & Ding, O. (2005). Kinetic modelling of partial oxidation of methane in an oxygen permeable membrane reactor. Chemical Engineering Research and Design, 83(2), 177-186.
Hou, K., & Hughes, R. (2003). Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation. Journal of Membrane Science, 214(1), 43-55.
Howard, B. H., Killmeyer, R. P., Rothenberger, K. S., Cugini, A. V., Morreale, B. D., Enick, R. M., & Bustamante, F. (2004). Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures. Journal of Membrane Science, 241(2), 207-218.
Iulianelli, A., Ribeirinha, P., Mendes, A., & Basile, A. (2014). Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renewable & Sustainable Energy Reviews, 29, 355-368.
Joensen, F., & Rostrup-Nielsen, J. R. (2002). Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 105(2), 195-201.
Johnston, B., Mayo, M. C., & Khare, A. (2005). Hydrogen: the energy source for the 21st century. Technovation, 25(6), 569-585.
Lattner, J. R., & Harold, M. P. (2004). Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems. International Journal of Hydrogen Energy, 29(4), 393-417.
Lattner, J. R., & Harold, M. P. (2005). Comparison of methanol-based fuel processors for PEM fuel cell systems. Applied Catalysis B-Environmental, 56(1-2), 149-169.
Lattner, J. R., & Harold, M. P. (2007). Autothermal reforming of methanol: experiments and modeling. Catalysis Today, 120(1), 78-89.
Lee, H. C., & Kim, D. H. (2008). Kinetics of CO and H 2 oxidation over CuO-CeO 2 catalyst in H 2 mixtures with CO 2 and H 2 O. Catalysis Today, 132(1), 109-116.
Li, A., Liang, W., & Hughes, R. (2000). The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. Journal of Membrane Science, 165(1), 135-141.
Lindström, B., Agrell, J., & Pettersson, L. J. (2003). Combined methanol reforming for hydrogen generation over monolithic catalysts. Chemical engineering journal, 93(1), 91-101.
Ma, L., Jiang, C., Adesina, A., Trimm, D., & Wainwright, M. (1996). Simulation studies of autothermal reactor system for H2 production from methanol steam reforming. The Chemical Engineering Journal and the Biochemical Engineering Journal, 62(2), 103-111.
Martínez-Arias, A., Hungría, A., Munuera, G., & Gamarra, D. (2006). Preferential oxidation of CO in rich H 2 over CuO/CeO 2: details of selectivity and deactivation under the reactant stream. Applied Catalysis B: Environmental, 65(3), 207-216.
Matsumura, Y., & Nakamori, T. (2004). Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A: General, 258(1), 107-114.
McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit operations of chemical engineering (Vol. 5): McGraw-Hill New York.
Mohan, K., & Govind, R. (1988). Effect of temperature on equilibrium shift in reactors with a permselective wall. Industrial & Engineering Chemistry Research, 27(11), 2064-2070.
Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel processing technology, 87(5), 461-472.
Olah, G. A. (2005). Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 44(18), 2636-2639.
Ouzounidou, M., Ipsakis, D., Voutetakis, S., Papadopoulou, S., & Seferlis, P. (2009). A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies. Energy, 34(10), 1733-1743.
Roa, F., Block, M. J., & Way, J. D. (2002). The influence of alloy composition on the H(2)flux of composite Pd-Cu membranes. Desalination, 147(1-3), 411-416.
Rodriguez, M. L., Ardissone, D. E., Pedernera, M. N., & Borio, D. O. (2010). Influence of the oxygen feed distribution on the performance of a catalytic reactor for ATR of methane. Catalysis Today, 156(3-4), 246-253.
Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design: John Wiley & Sons.
Taborek, J., Hewitt, G. F., & Afgan, N. (1983). Heat exchangers: theory and practice: Hemisphere Washington, DC.
Tartakovsky, L., Baibikov, V., & Veinblat, M. (2014). Modeling Methanol Steam Reforming for Internal Combustion Engine. Energy and Power, 4(1A), 50-56.
Terazaki, T., Nomura, M., Takeyama, K., Nakamura, O., & Yamamoto, T. (2005). Development of multi-layered microreactor with methanol reformer for small PEMFC. Journal of Power Sources, 145(2), 691-696.
TOYOTA. (2016). 2016 Mirai Product Information.
Uemiya, S., Sato, N., Ando, H., & Kikuchi, E. (1991). The water gas shift reaction assisted by a palladium membrane reactor. Industrial & Engineering Chemistry Research, 30(3), 585-589.
Uemiya, S., Sato, N., Ando, H., Matsuda, T., & Kikuchi, E. (1990). Steam reforming of methane in a hydrogen-permeable membrane reactor. Applied catalysis, 67(1), 223-230.
Xomeritakis, G., & Lin, Y. (1996). Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. Journal of Membrane Science, 120(2), 261-272.
Xomeritakis, G., & Lin, Y. (1997). Fabrication of thin metallic membranes by MOCVD and sputtering. Journal of Membrane Science, 133(2), 217-230.
Zhou, W., Tang, Y., Pan, M., Wei, X., Chen, H., & Xiang, J. (2009). A performance study of methanol steam reforming microreactor with porous copper fiber sintered felt as catalyst support for fuel cells. International Journal of Hydrogen Energy, 34(24), 9745-9753.