| 研究生: |
黃俊傑 Huang, Chun-Chieh |
|---|---|
| 論文名稱: |
氧摻雜碳化矽介電阻障層應用於奈米積體電路製程整合之開發與研究 Study and Development of Oxygen-doped Silicon Carbide Dielectric Barrier for Nano Integrated Circuit Integration |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 氧摻雜碳化矽 、介電阻障層 、含氟氧參雜碳化矽 、黏附力 、紫外線處理 |
| 外文關鍵詞: | fluorine-doped silicon oxycarbide, silicon oxycarbide, UV curing, Dielectric barrier |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為研究並開發新一代適用於奈米積體電路製程之介電阻障層。利用電漿輔助化學氣相沈積法,在矽基材上沈積氧摻雜碳化矽薄膜,並且針對氧摻雜碳化矽在奈米銅導線製程整合應用上面臨介面、後處理與性質改良之問題做深入研究探討。
本論文第一部份將討論初鍍膜的材料特性。改變不同的沈積條件,利用分析方式瞭解初鍍膜的物理、化學及電性。在物理特性方面,氧摻雜碳化矽的折射率隨二氧化碳流量增加而減少,而Si-O鍵結含量升高,硬度與彈性模數隨之上升。在化學性質方面,二氧化碳流量的增加有助於Si-O鍵結的形成,但對其他種鍵結Si-H、Si-C與-CH3鍵結的形成有抑制作用。在電性上,高含氧的氧摻雜碳化矽膜,由於具有較低極性的O3./2Si(CH3)的分子結構,因此具有比較低的介電常數。
第二部分討論介電阻障層初鍍膜在整合元件中與銅或low k 介面5之性質,利用原子力顯微鏡觀察電漿處理後銅與 low k材料的表面;X光光電子能譜分析銅表面電漿處理後的鍵結型態;四點彎曲測試量測上述氧摻雜碳化矽膜與銅或low k 的介面黏附力。結果顯示,利用氫氣電漿再經矽甲烷浸潤、氨氣電漿後處理,使銅表面形成氮化矽,與氧摻雜碳化矽具有更好的介面性質。在黏附力測試方面,可改善傳統氨氣電漿處理的方式,與銅介面黏附力可達到 9.6J/cm2;在指叉結構線路的崩潰電壓測試中有10V的改善。
第三部份中,在上述氧摻雜碳化矽薄膜中加入氟,改變氟在初鍍膜的含量,利用金屬絕緣體半導體(metal insulator silicon, MIS)的結構,觀察氟在氧摻雜碳化矽中的電容-電壓(capacitance-voltage, C-V)與漏電流-電壓(leakage current and voltage, I-V)曲線行為。當氟加入含氧摻雜碳化矽中可降低薄膜的極化現象,介電常數因極性的減少而降低,可達4.05;漏電流因懸鍵與未飽和鍵結的減少而改善,可達60%。在指叉結構崩潰電流測試中,含氟氧摻雜碳化矽的崩潰電壓約改善13V。
第四部份討論含氧摻雜碳化矽與多孔性超低介電常數(porous low dielectric constant)介電材料整合之應用。紫外線處理為目前多孔低介電材料製程所採用,氧摻雜碳化矽性質在處理過程受基板溫度、照射時間與成份的影響,利用傅利葉紅外線光譜分析鍍膜經紫外線處理後薄膜的鍵結型態;金屬絕緣體半導體結構分析鍍膜經紫外線處理後薄膜的介電性質與漏電流;利用斯托尼等式(Stoney’s equation)以曲率方式求鍍膜殘留應力。結果顯示,化學性質方面,鍍膜經紫外線處理後,隨基材溫度升高,鍍膜結構改變,溫度低時以形成O1/2Si(CH3)3為主;溫度高時以形成O3/2Si(CH3)為主。電性方面,氧摻雜碳化矽基板溫度超過350℃,紫外線照射處理後,介電常數下降。漏電流隨基材處理溫度升高而下降。機械性質方面,薄膜殘留應力經紫外線處理後鍍膜壓縮應力轉變為拉伸應力。
新穎氧摻雜碳化矽在奈米銅導線製程應用上,必須考量整合性問題,本研究以整合觀點出發,探討鍍膜在應用上所面臨之問題,做一綜觀性的研究與探討,以使鍍膜在製程整合應用上有最佳化的參數。
In this thesis, we studied and developed the novel dielectric barrier used for nano integrated circuit. Oxygen-doped silicon carbide (SiCO) was deposited on silicon substrate by plasma enhanced chemical vapor deposition(PECVD). The properties of interface, modification and post treatment for the integration application of copper interconnect were studied.
In the first section, the physical, chemical and electrical characteristics of the as-deposited films produced by different conditions were investigated. In the part of physical characteristics, the refractive index of SiCO films decreased by carbon dioxide flow rate, but hardness and modulus increased as Si-O bonds increased. In the chemical characteristics, carbon dioxide was contributive to Si-O bonds, but suppressed Si-H、Si-C and –CH3 formation. High oxygen doped silicon carbide was contributive to low polarizable O3./2Si(CH3) molecule and low dielectric constant.
Interface characteristics of copper, low k and SiCO were discussed in the second section. The morphology of copper and low k surface after plasma treatment was investigated by atomic forced microscope(AFM), and the bonds were observed by X-ray photoelectron spectroscopy (XPS). It formed nitride on the copper surface by hydrogen plasma, silane soak, and ammonia post treatment. The plasma treatment step improved the interface characteristics of copper and SiCO films. The adhesion could reach 9.6 J/cm2 and was better than ammonia plasma treatment only. It also improved voltage breakdown about 10V in comb test structure.
The modification of the SiCO by fluorine doped was investigated in the third section. Capacitance-voltage (C-V) and leakage current and voltage (I-V) characteristic curves of fluorine-doped SiCO (SiCOF) films were observed by the metal insulator silicon (MIS) structure. Fluorine was contributive to the polarization reduction of SiCOF, and the dielectric constant decreases by fluorine doped rate. The leakage current decrease was contributive to the reduction of dandling and unsaturated bonds. The voltage breakdown was about 13V improvement compared with fluorine free SiCO film in the comb test structure.
Finally, ultra violet(UV) impacts on the SiCO films were investigated in the last part of the thesis. UV curing is wildly used as utrla low k post treatment. SiCO dielectric barrier characteristics were effected by treatment substrate temperature, curing time, and component. MIS was used to investigate the leakage current and dielectric properties. It showed that the dielectric constant and leakage current decreased as substrate temperature increase. The residual stress was measured by Stoney’s equation, and became tension after curing by hydration and condensation reaction.
Novel oxygen-doped silicon carbide is applied to the copper interconnect. The overall studies of SiCO characteristics were investigated in our thesis for the integration challenges in order to find out a optimized condition.
[1] S.P. Murarka, “Low Dielectric Constant Materials for Interlayer Dielectric Applications”, Solid State Technology, 39 (3), 83 (1996)
[2] R. H. Havemann, J. A. Hutchby, “High-Performance Interconnects: An Integration Overview”, Proc. IEEE, Vol. 89(5), 586 (2001).
[3] H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001.
[4] J. R. Lloyd, “Electromigration in Integrated Circuit Conductors”,J. Phys. D, 32, R109 (1999).
[5] M. Bohr, “ Interconnect Scaling- The Real Limiter to High Performance ULSI”, IEEE IEDM Proc., 241 (1995).
[6] International Technology Roadmap for Semiconductors: Interconnect, pp.5 (2006).
[7] M. S. Laing, “Challenges in Cu/Low-K Integration”, IEEE IEDM2004 Tech. Dig., 313 (2004)
[8] Jung-Chao Chiou, Hong-I Wang, and Mao-Chieh Chen, “Dielectric Degradation of Cu/SiO2/Si Structure During Thermal Annealing”, J. Electrochem. Soc., 143, 990 (1996).
[9] International Technology Roadmap for Semiconductors: Interconnect, pp.17 (2005).
[10] M. Fayolle, G. Fanget, J. Torres, G. Passemard,” Overcomming resist poisoning issue during Si-O-C dielectric integration in Cu Dual Damascene interconnect for 0.1um technology” Advanced Metallization Conference 2001, 509 ( 2001).
[11] J. Yota, M. Janani, L. E. Camilletti, A. Kar-Roy, Q. Z. Liu, C. Nguyen, and M. D. Woo, “Comparison between HDPCVD and PECVD Silicon Nitride for Advanced Interconnect”, IEEE Inter. Technology Conf., 76 (2000).
[12] P. Xu, K. Huang, A. Patel, S. Rathi, B. Tang, J. Ferguson, J. Huang, C. Ngai, and M. Loboda, “BLOκ TM-a low-κ dielectric barrier/etch stop film for copper damascene applications”, IEEE Proc. of 1999 International Interconnect Technology Conference, San Francisco, CA, 109 (1999).
[13] M. J. Loboda, “New solutions for intermetal dielectrics using trimethylsilane-based PECVD processes”, Microelectron. Eng. 50, 15 (2000).
[14] C. C. Chiang, I. H. Ko, M. C. Chen, Z. C. Wu, Y. C. Lu, S. M. Jang, and M. S. Laing, “Physical and Barrier Properties of PECVD Amorphous Silicon-Oxycarbide from Trimethylsilane and CO2”, J. Electrochem. Soc. 151 (10), G704 (2004).
[15] T. Ishimaru, Y. Shioya, H. Ikakura, M. Nozawa, S. Ohgawara, T. Ohdaira, R. Suzuki, and K. Maeda, “Properties of Low-k Copper Barrier SiOCH Film Deposited by PECVD Using Hexamethyldisiloxane and N2O”, J. Electrochem. Soc. 150 (5), F83 (2003).
[16] T. Ishimaru, Y. Shioya, H. Ikakura, M. Nozawa, Y. Nishimoto, S. Ohgawara, and K.Maeda, “Development of low-k copper barrier films deposited by PE-CVD using HMDSO, N2O and NH3”, IEEE, Inter. Interconnect Technology Conf., 36 (2001).
[17] K. I. Takeda, D. Ryuzaki, T. Mine, and K. Hinode, “New dielectric barrier for damascene Cu interconnection: trimethoxysilane-based SiO2 film with k=3.9”, IEEE, Inter. Interconnect Technology Conf., 244 (2001).
[18] Y. W. Koh, K. P. Loh, L. Rong, A. T. S. Wee, L. Huang, and J. Sudijono, “Low dielectric constant a-SiOC:H films as copper diffusion barrier”, J. Appl. Phys., 93, 1241 (2003).
[19] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, Z. S. Yanovitskaya,” Low dielectric constant materials for microelectronics”, J Appl. Phys., 93, 8793 (2003).
[20] Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films”, J. Appl. Phys., 90, 3367 (2001).
[21] S. K. Jang-Jean, Y. L. Wang, C. P. Liu, W. S. Hwang. W. T. Tseng, C. W. Liu, “In situ fluorine-modified organosilicate glass prepared by plasma enhanced chemical vapor deposition”, J. Appl. Phys., 94, 732 (2003).
[22] C. C. Chiang, M. C. Chen, L. J. Li, Z. C. Wu, S. M. Jang, and M. S. Liang, “Physical and Barrier Properties of Amorphous Silicon- Oxycarbide Deposited by PECVD from Octamethylcyclotetrasiloxane”, J. Electrochem. Soc., 151, G612 (2004).
[23] C. C. Chiang, Z. C. Cheng, W. H. Wu, M. C. Chen, C. C. Ko, H. P. Chen, S. M. Jang, C. H. Yu, and M. S. Liang, “Physical and Barrier Properties of Plasma Enhanced Chemical Vapor Deposition α-SiC:N:H Films”, Jpn. J. Appl. Physi., 42, 4489 (2003).
[24] N. Biswas, X. Wang, S. Gangopadhay, “Electrical properties of amorphous silicon carbide films”, Appl. Phys. Lett., 80, 3439 (2002).
[25] C. C. Huang, J. L. Huang, Y. L. Wang, and J. J. Chang, “Electrical properties of fluorine-doped silicon-oxycarbide dielectric barrier for copper interconnect”, J. Vac. Sci. Tech. B, 24, 2621 (2006).
[26] C. C. Huang, J. L. Huang, Y. L. Wang, and S. C. Chang, “Fluorine-Doped Carbide Dielectric Barrier to Improve Copper Interconnect Line-to-Line Voltage Breakdown”, Electrochem. Solid-State Lett., 10, G8 (2007).
[27] P. J. Soininen, K. E. Elers, V. Saanila, S. Kaipio, and T. Sajavaara, “Reduction of Copper Oxide Film to Elemental Copper”, J. Electrochem. Soc. 152, G122 (2005).
[28] P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng, and M. Sze, “Effects of NH3-Plasma Nitridation on the Electrical Characterizations of Low-k ydrogen Silsesquioxane with Copper Interconnects”, IEEE Trans. Elect. Dev., 47, 1733 (2000).
[29] J. Noguchi, N. Ohashi, T. Jimbo, H. Yamaguchi, K. I. Takeda, and K. Hinode, “Effect of NH3-Plasma Treatment and CMP Modification on TDDB Improvement in Cu Metallization”, IEEE Trans. Elect. Dev., 48, 1340 (2001)
[30] M. W. Lane, E. G. Liniger, and J. R. Lloyd, “Relationship between interfacial adhesion and electromigration in Cu metallization”, J. Appl. Phys., 93, 1417 (2003).
[31] M. H. Lin, Y. L. Lin, J. M. Chen, M. S. Yeh, K. P. Chang, K. C. Su, and T. Wang, “Electromigration Lifetime Improvement of Copper Interconnect by Cap/Dielectric Interface Treatment and Geometrical Design”, IEEE Trans. Electron. Devices, 52, 2602 (2005).
[32] C. C. Huang, Y. L. Wang, and S. C. Chang, “Phase transformation of tantalum on different dielectric films with plasma treatment”, Thin Solid Films, 498, 286 (2006).
[33] J. Sudijono, ” BEOL Technology for the 45nm Technology Node” , IEDM 2004, Short Course.
[34] M. A. EI Khakani, M Chaker, A. Jean, S. Boily, H Pepin, and J. C. Kieffer, “Effect of rapid thermal annealing on both the stress and the bonding states of a-SiC:H films’, J. Appl. Phys., 74, 2834 (1993).
[35] K. Goto, D. Kodama, N. Suzumura, S. Hashii, M. Matsumoto, “Stress Engineering in Cu Low-k Interconnects by using UV-Cure of Cu Diffusion Barrier Dielectrics”, IEEE Inter. Technology Conf., 95 (2000).
[36] S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998).
[37] S. R. Wilson et al., Handbook of Multilevel Metallization for Integrated Circuits, Noyes Publications, Park Ridge, NJ, 1993, chap. 1, pp. 17.
[38] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing, Noyes, Westwood, N. J., 1998.
[39] S. R. Wilson et al., Handbook of Multilevel Metallization for Integrated Circuits, Noyes Publications, Park Ridge, NJ, 1993, chap. 1, pp. 97–107.
[40] S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys., 38, 2951 (1967).
[41] M. Hatano, T. Usui, Y. Shimooka, and H. Kaneko,” EM lifetime improvement of Cu damascene interconnects by p-SiC cap layer”, IEEE, Int. Interconnect Technology Conf., 212 (2002).
[42] T. I Bao, S. M. Jeng, S. M. Jang, “Method for preventing formation of photoresist scum’, 2005, U.S. Patent 20050006340 (2005).
[43] S. Allada, “Low k adhesion issues in Cu/low k integration” IEEE, Int. Interconnect Technology Conf., 161(1999).
[44] M. A. Hussein, and Jun He, “Materials’ Impact on Interconnect Process Technology and Reliability”, IEEE Trans. Semiconduct. Manufact., 17,305(2004).
[45] C. D. Hartfield, E. T. Ogawa, Y. J. Park, T. C. Chiu, and H. Guo, “Interface Reliability Assessments for Copper/Low-k Products”, IEEE Trans. Devices and Reliability, 4, 129 (2004).
[46] B. Chapman, Glow Discharge Process, (John Wiley and Sons, New York,1980).
[47] Wen Wu, X. Duan, and J. S. Yuan, “Modeling of Time-Dependent Dielectric Breakdown in Copper Metallization”, IEEE-IRPS, 1998 Proceedings, 36 (1998).
[48] M. Vogot, M. Kachel, M. Plotner, and K. Drescher, “Dielectric barriers for Cu metallization systems”, Micorelectronics Engineering, Vol, 37/38, 181 (1997).
[49] J. R. Lloyd and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, 262, 135 (1995).
[50] C.K. Hu, R. Rosenberg, and K. Y. Lee, “Electromigration path in Cu thin-film lines”, Appl. Phys. Lett., 74, 2945 (1999).
[51] S. Vaidya and A. K. Shinha, “Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films”, Thin Solid Films, 75, 253 (1981).
[52] M. D. Thouless, J. W. Hutchinson, “Measurement of the Adhesion of a Brittle Film on a Ductile Substrate by Indentation”, Proc Royal Soc. A, 452, 2319 (1996).
[53] L. Scudiero and J. T. Dickinson, “Electrical transients generated by the peel of a pressure sensitiveadhesive tape from a copper substrate. Part II: Analysis offluctuations --- evidence for chaos”, J. Adhesion Sci. Technol. 9, 27 (1995).
[54] R. H. Dauskardt, M. Lane, Q. Ma, N. Krishna, “Adhesion and debonding of multi-layer thin film structures”, Eng. Fracture Mechanics 61, 141 (1998).
[55] D.Menzel, “Recent developments in electron and photon stimulated desorption”, J.Vac. Sci. Technol,A20,538 (1982).
[56] M. L. Knotek, ‘Stimulated desorption from surfaces”, Phys. Today 37,24 ( 1984).
[57] P. A. Redhead, “Interaction of slow Electron chemisorb Oxygen”, Can. J. Phys. 42,886 (1964).
[58] P. Hesto, in: G. Barvotlin, A. Vapaille (Eds.), Instabilities in Silicon Devices, Ch. 5, vol. 1, pp.263, North-Holland, Amsterdam (1986).
[59] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, Chap. 14, pp. 25, McGraw-Hill, New York, (1970).
[60] D.A. Neamen, “Semiconductor physics and devices”, pp.383, McGraw-Hill, New York, (1997). Today 37, 24 (1984).
[61] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, Ch. 14, pp. 28, McGraw-Hill, New York (1970).
[62] S. M. Sze, Physics of Semiconductor Devices, Ch. 7, pp. 402, Wiley, New York (1981).
[63] W.O. George, H. A. Willis, Computer methods in UV, visible, and IR spectroscopy, Cambridge, UK :Royal Society of Chemistry(1990)
[64] E. Pelletier, Handbook of Optical Constants of Solids II, E. D. Palik, Editor, (Academic, NY, 1991).
[65] W. C. Oliver, G. M. Pharr., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mat. Res. 7, 1564 (1992).
[66] K. Jia, T.E. Fischer and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites”, Nanostruct. Mater., 10, 875 (1998).
[67] H.C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films”, Thin Solid Films, 335, 186 (1998).
[68] H. M. Tong, L. T. Nguyen, New Characterization Techniques for Thin Polymer Films, Wiley, New York, 1990.
[69] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc, 148, F148 (2001).
[70] G. Das, G. Marlotto, and A. Quaranta, “Microstructural Evolution of Thermally Treated Low-Dielectric Constant SiOC:H Films Prepared by PECVD”, J. Electrochem. Soc, 153, F46 (2006).
[71] X.C. Xiao, Y.W. Li, L.X. Song, X.F. Peng, X.F. Hu, “Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar”, Appl. Surf. Sci. 156, 155 (2000)
[72] S. Sitbon, M.C. Hugon, B. Agius, F. Abel, J.L. Courant, M. Puech, ” Low temperature deposition of silicon nitride films by distributed electron cyclotron resonance plasma-enhanced chemical vapor deposition” J. Vac. Sci. Technol. A 13, 2900 (1995).
[73] V.S. Nguyen, S. Burton, P. Pan, “The Variation of Physical Properties of Plasma-Deposited Silicon Nitride and Oxynitride with Their Compositions”J. Electrochem. Soc. 131, 2348 (1984)
[74] G. Lucovsky, D.V. Tsu, “Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation”J. Vac. Sci. Technol. A5, 2231 (1987)
[75] A. Milella, J. L. Delattre, F. Palumbo, F. Fracassi, and R. d’Agostino, “From Low-k to Ultralow-k Thin-Film Deposition by Organosilicon Glow Discharges”, J. Electrochem. Soc. 153, F106 (2006).
[76] Y. S. Mor, et.al., “Effective repair to ultra-low-k dielectric material (k~2.0) by hexamethyldisilazane treatment”, J. Vac. Sci. Technol. B 20(4), 1334 (2002).
[77] S. K. Kwak, K. H. Jeong, and S. W. Rhee, “From Low-k to Ultralow-k Thin-Film Deposition by Organosilicon Glow Discharges”, J. Electrochem. Soc. 151, F11(2006).
[78] F. Demichelis, C.F. Pirri, E. Tresso, T. Stapinski,” Differences in physical properties of hydrogenated and fluorinated amorphous silicon carbide prepared by reactive sputtering” J. Appl. Phys. 71, 5641 (1992)
[79] Dong S. Kim, Young H. Lee, “Annealing effects on a-SiC:H and a-SiC:H(F) thin films deposited by PECVD at room temperature” Thin Solid Films, 261, 192 (1995).
[80] Y. Tawada, K. Kondo, H. Okamoto, Y. Hamakawa, “Properties and structure of a-SiC:H for high-efficiency a-Si solar cell “, J. Appl. Phys. 53, 5273 (1982)
[81] J. M. Park and S. W. Rhee, “Remote Plasma-Enhanced Chemical Vapor Deposition of Nanoporous Low-Dielectric Constant SiCOH Films Using Vinyltrimethylsilane”, J. Electrochem. Soc. 149, F92 (2002).
[82] J. Y. Kim, M. S. Hwang, Y. H. Kim, H. J. Kim, and Y. Lee, “Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition”, J. Appl. Phys., 90, 2469 (2001).
[83] K. M. Willams, J. Huang, M. Schulberg, P. V. Cleemput,” Low k material optimization - Semiconductor Manufacturing”, IEEE, Inter. Interconnect Technology Conf., 203 (2001).
[84] J. Widodo, L. N. Goh, W. Lu, S. G. Mhaisalkar, K. Y. Zeng, and L. C. Hsia, “Comparative Study of Trimethyl Silane and Tetramethylcyclotetrasiloxane-Based Low-k Films”, J. Electrochem. Soc. 152, G246 (2005)
[85] C. C. Chiang, M. C. Chen, L. J. Li, Z. C. Wu, S. M. Jang, and M. S. Liang, “Effects of O2- and N2-Plasma Treatments on Copper Surface”, Jpn. J. Appl. Phys., 43, 7415 (2004).
[86] B. Rousseau, H. Estrade, P. Brauly, P. Ranson, “Chemical physics of fluorine plasma-etched silicon surfaces: Study of surface contaminations”, J. Appl. Phys., 68, 1702 (1990).
[87] L. G. Gosset et al., “Self Aligned Barrier Approach: Overview on Process, Module Integration and Interconnect Performance Improvement Challenges”, IEEE, Inter. Interconnect Technology Conf., 84 (2006).
[88] T. K. Kang and W. Y. Chou, “Avoiding Cu Hillocks during the Plasma Process”, J. Electrochem. Soc. 151, G391 (2004).
[89] E. C. Onyiriuka, Applied Spectroscopy, “Aluminum, Titanium Boride, and Nitride Films Sputter-Deposited from Multicomponent Alloy Targets Studied by XPS”, 47(1),35 (1993).
[90] C. D. Wanger, J. F. Moulder, L. E. Davis, W. M. Riggs, Perking-Elmer Corporation, Physical Electronics Division (end of book).
[91] B.A. Deanglis, C. Rizzo, S. Contarini, S. P. Howlett, “XPS study on the dispersion of carbon additives in silicon carbide powders”, Applied Surface Science, Vol 51, 177 (1991).
[92] M. Nastasi, F.W. Saris, L.S. Hung, J.W. Mayer, “Stability of amorphous Cu/Ta and Cu/W alloys”, J. Appl. Phys. 58, 3052 (1985).
[93] P. N. Baker, “Preparation and properties of tantalum thin films”, Thin Solid Films 14, 3 (1972).
[94] D.W. Face, D.E. Prober, “Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer”, J. Vac. Sci. Technol., A 5, 3408 (1987).
[95] M. Stavrev, D. Fisher, F. Prassler, C. Wenzel, K. Drescher, “Behavior of thin Ta-based films in the Cu/barrier/Si system”, J. Vac. Sci. Technol., A 17, 993 (1999).
[96] Zhe Chen, K. Prasad, N. Jiang, L. J. Tang, P. W. Lu, and C. Y. Li “Silicon carbide based dielectric composites in bilayer sidewall barrierfor Cu/porous ultralow-k interconnects”, J. Vac. Sci. Technol., B 23, 1866 (2004).
[97] H. Donohue, J. C. Yeoh, K. Giles and K. Buchanan, “Low resistivity α-tantalum in Cu/CVD low-k (Orion™) integration”, Micro. Eng. Vol. 64, 299 (2002).
[98] H. Donohue, J. C. Yeoh, K. Giles and K. Buchanan, “Low-resistivity PVD /spl alpha/-tantalum: phase formation and integration in ultra-low k dielectric/copper damascene structures”, IEEE Inter. Interconnect Conf., 179 (2002).
[99] M. Lane, A. Vainchtein, H. Gao, R. H. Dauskardt, “Plasticity contributions to interface adhesion in thin-film interconnect structures”, J. Mater. Res. Vol. 15, 2758 (2000).
[100] G. B. Alers, K. Jow, R. Shaviv, G. Kooi, and G. W. Ray, “Interlevel Dielectric Failures in Copper/Low-k Structures”, IEEE Trans. Device Mater. Reliabil., Vol. 4, 148 (2004).
[101] S. M. Lee, M. Park, K. C. Park, J. T. Bark and J. Jang, “Low Dielectric Constant Fluorinated Oxide Films Prepared by Remote Plasma Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 35, 1579 (1996).
[102] T. Usami, K. Shimokawa, and M. Yoshimaru, , “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys. 33, 408 (1994).
[103] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Reduction Mechanism in the Dielectric Constant of Fluorine-Doped Silicon Dioxide Film”, J. Elecreochem. Soc. 144, 2531 (1997).
[104] M. J. Shapiro, S. V Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of fluorosilicate glass for ULSI applications”, Thin Solid films 270, 503 (1995).
[105] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl. Phys. Lett. 68, 832 (1996).
[106] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Preparation of Low-Dielectric-Constant F-Doped SiO2 Films by Plasma-Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys., Part 1 35, 1468 (1996).
[107] E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982), Chap. 10, pp. 424.
[108] H. Miyashita and Y. Watabe, “Flatband voltage shift of amorphous silicon nitride metal-insulator-semiconductor diodes “, J. Appl. Phys. 70 (4), 2452 (1991).
[109] M. Ohring , The Material Science of Thin Films, P469, Academic Press, San Diego, California, 1992.
[110] B. Y. Tsui, K. L Fang, S. D. Lee, “Electrical Instability of low- Dielectric Constant Diffusion Barrier Film (a-SiC :H) for Copper Interconnect”, IEEE Trans. Electron Device, 48, 2375 (2001).
[111] K. L. Fang and B. Y. Tsui, “Time-Dependent Dielectric Breakdown Studies of PECVD HSiCN and HSiC Thin Films for Copper Metallization”, J. Electrochem. Soc., 152, G795 (2004).
[112] 陳致宏,”非結晶碳化矽阻障介電材料之特性研究”, 國立中山大學物理研究所,碩士論文,中華民國九十一年六月.
[113] J. D. Jackson, Classic Electrodynamics, 3rd ed. (Wiley, New York, 1999), Chap. 4, pp. 153.
[114] T. Fujii, K. Asai, M. Sawada, K. Sakurai, K. Kobayashi, and M. Yoneda, “Effects of Fluorine Stability and Stress in SiOF Films on Film Adhesion”, J. Electrochem. Soc. 152, G152 (2005)
[115] J. S. Jeng, J. S. Chen, G. Lin, and J. Ju, “115-Material Characterization of Cu-Fluorinated Silicate Glass and Cu-Organosilicate Glass Systems at Elevated Temperatures”, J. Electrochem. Soc. 149, F43 (2002).
[116] C. C. Chiang and M. C. Chen, “UV/EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Materials”, IEEE Inter. Technology Conf. 200 (2002)
[117] S. I. Nakao. et al., “UV-EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Material”, IEEE International Interconnect Technology Conference, 66 (2006).
[118] T. B. Casserly, Chemical Vapor Deposition of Organosilicon and Sacrificial Polymer Thin Films (Massachusetts Institute of Technology, 2005), Chap. 4, pp. 100.
[119] H. He and M. F. Thorpe, “Elastic Properties of Glasses”, Phys. Rev. Lett. 54, 2107(1985).
[120] H. S. Choi, T. Lee, J. Kim, K. H. Hong, K. H. Kim, J. Shin, H. J. Shin, H. D, Jung, and S. H. Choi, “Prediction of Young’s Moduli of Low Dielectric Constant Materials”, Mater. Res. Soc. Symp. Proc. Vol. 891, EE07-08.1 (2006).
[121] J. Thurn and R. F. Cook, “Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films”, J. Appl. Phys., 91, 1988 (2002).
[122] J. Thurn and R. F. Cook, M. Kamarajugadda, S. P. Bozeman and L. C. Steam, “Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films”, J. Appl. Phys., 95, 967 (2004).
[123] A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A, Vol. 15, No.2,378 (1997).
[124] M. S. Haque, H. A. Nasseem, and W. D. Brown, “Correlation of stress behavior with hydrogen-related impurities in plasma-enhanced chemical vapor deposited silicon dioxide films”, J. Appl. Phys. 82, 2922 (1997).
[125] J. K. Cramer and S. P. Murarka, “Stress-temperature behavior of electron cyclotron resonance oxides and their correlation to hydrogenous species concentration”, J. Appl. Phys., 77,3048 (1995).
[126] S. Habermehi, “Stress relaxation in Si-rich silicon nitride thin films “, J. Appl. Phys., 83, 4672 (1998).
[127] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc., 148, F148 (2001).