| 研究生: |
黃德安 Huang, De-An |
|---|---|
| 論文名稱: |
定點熱分析及微奈米熱探針微影技術 In-Situ Thermal Analysis and Scanning Thermal Lithography in Micro and Nano Scale |
| 指導教授: |
郭昌恕
Kuo, Changshu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 定點熱分析 、熱探針微影技術 、Micro-TA |
| 外文關鍵詞: | Zinc oxide, Scanning thermal lithography, Micro thermal analysis, In-situ thermal analysis |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Micro-TA 是一種結合微熱探針與原子力掃瞄顯微鏡的表面熱分析技術。微熱探針不僅可當作加熱源,亦可作為精密的溫度感測器,且其尖端直徑在微米等級,加上原子力掃瞄顯微鏡在微奈米尺度良好的定位功能,Micro-TA成為一卓越的定點表面熱分析技術,其解析度在5m以下。除了應用於熱分析外,微熱探針亦能應用於熱探針微影技術。在熱探針微影技術中,藉由原子力掃瞄顯微鏡在微奈米尺度良好的定位功能,微熱探針像一支〝熱筆〞被操控著,可在試片表面畫出微米尺度的圖形。不同於傳統的加熱方法,熱探針是對試片進行小區域的加熱,此特性可應用於在低熱阻抗的材料上作熱處理,例如可撓曲的高分子基板,既可得到熱處理的效果,又能避免破壞基板。
在本研究中,含鋅離子的聚丙烯酸[poly(acrylic acid)]高分子溶液先以旋塗法均勻的塗佈在PET基板上,再以熱探針微影技術在已塗佈含鋅離子的聚丙烯酸高分子薄膜的PET基板上作熱處理,使含鋅離子的聚丙烯酸高分子薄膜分解形成氧化鋅(Zinc oxide)顆粒並附著於PET基板上,並討論不同參數對實驗結果的影響。
在以熱探針微影技術進行熱處理前,含鋅離子的聚丙烯酸高分子粉末及薄膜分別以熱重分析儀與Micro-TA來分析其熱性質。由於利用熱探針微影技術所畫出來的圖形其尺寸小於Micro-TA的解析度,因此其熱性質則由擁有更小解析度的nano-TA技術來分析。經過熱處理後,在含鋅離子的聚丙烯酸高分子薄膜上所形成的圖形的組成材料藉由穿隧式電子顯微鏡的觀察而得知,而此圖形與PET基板的表面及介面型態則由原子力掃瞄顯微鏡與掃描式電子顯微鏡來觀察。
The scanning probe microscope equipped with a thermal probe was employed simultaneously as a localized heating source and a temperature sensor. By the scale of the tip of the thermal probe could be reduced to micro scale and precise positioning system from the scanning probe microscope, a surface thermoanalytical technique was developed as “Micro-TA”. Meanwhile, with the advantages of precise positioning system from the scanning probe microscope, the scanning thermal lithography (STL) (or so-called the thermolithography) was conducted by using the thermal probe as a “hot-pen”. Unlike the heating of the furnace, the local heating of STL could proceed a high temperature heat treatment on a substrate which is low heat resistance, such as polymer substrates.
In this research, STL working substrates were obtained by spin-coating poly(acrylic acid) aqueous solutions pre-loaded with zinc ions on transparent poly(ethylene tetraphthalate) (PET) thin films. Localized heating at constant temperatures and positioning process induced the formation of zinc oxide with desired patterns. Before the STL proceeded, the thermal properties of Zn2+/PAA bulk materials and thin films were measured by TGA and Micro-TA. The thermal properties of the patterns fabricated by STL were measured by nano-TA which was also a surface thermoanalytical technique like Micro-TA, but reduced the lateral resolution to sub-100nm. The interface of the Zn2+/PAA thin film and PET substrate was investigated and discussed.
1. Mackenzie, R. C., Nomenclature in Thermal Analysis, Part IV. Journal of Thermal Analysis and Calorimetry 1978, 13, 388-392.
2. Williams, C. C.; Wickramasinghe, H. K., Scanning Thermal Profiler. Applied Physics Letters 1986, 49, 1587-1589.
3. Majumda, A.; Carrejo, J. P.; Lai, J., Thermal Imaging Using The Atomic Force Microscope. Applied Physics Letters 1993, 62, 2501-2503.
4. Pylkki, R. J.; Moyer, P. J.; West, P. E., Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy. Japanese Journal of Applied Physics 1994, 33, 3785-3790.
5. Hammiche, A.; Hourston, D. J.; Pollock, H. M.; Reading, M.; Song, M., Scanning Thermal Microscopy: Subsurface Imaging, Thermal Mapping of Polymer Blends, and Localized Calorimetry. Journal of Vacuum Science & Technology B 1996, 14, 1486-1491.
6. Hammiche, A.; Pollock, H. M.; Song, M.; Hourston, D. J., Sub-surface Imaging by Scanning Thermal Microscopy. Measurement Science and Technology 1996, 7, 142-150.
7. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J., Localized Thermal Analysis Using a Miniaturized Resistive Probe. Review of Scientific Instruments 1996, 67, 4268-4274.
8. Moon, I.; Androsch, R.; Chen, W.; Wunderlich, B., Principles of Micro-Thermal analysis and Its Application to The Study of Macromolecules. Journal of Thermal Analysis and Calorimetry 2000, 59, 187-203.
9. Song, M.; Hourston, D. J.; Grandy, D. B.; Reading, M., An Application of Micro-Thermal Analysis to Polymer Blends. Journal of Applied Polymer Science 2000, 81, 2136-2141.
10. Royall, P. G.; Hill, V. L.; Craig, D. Q. M.; Price, D. M.; Reading, M., An Investigation into the Surface Deposition of Progesterone on Poly(d, l-) Lactic Acid Microspheres Using Micro-Thermal Analysis. Pharmaceutical Research 2001, 18, 294-298.
11. Abad, M. J.; Ares, A.; Barral, L.; Cano, J.; Diez, F. J.; Lopez, J.; Ramirez, C., Characterization of Biaxially Oriented Polypropylene Films by Atomic Force Microscopy and Microthermal Analysis. Journal of Applied Polymer Science 2002, 85, 1553-1561.
12. Oulevey, F.; Burnham, N. A.; Gremaud, G.; Kulik, A. J.; Pollock, H. M.; Hammiche, A.; Reading, M.; Song, M.; Hourston, D. J., Dynamic Mechanical Analysis at The Submicron Scale. Polymer 2000, 41, 3087-3092.
13. Ye, J.; Hasegawa, T.; Suzuki, A., Evaluation of the Microstructure and Melting Behavior of Drawn Polypropylene Fibers with a Microthermal Analyzer. Journal of Applied Polymer Science 2006, 100, 1306-1311.
14. Keating, M. Y., Fast Heating in μ-Thermal Analysis Journal of Thermal Analysis and Calorimetry 2005, 82, 559-564.
15. Hammiche, A.; Bozec, L.; Conroy, M.; Pollock, H. M.; Mills, G.; Weaver, J. M. R.; Price, D. M.; Reading, M.; Hourston, D. J.; Song, M., Highly Localized Thermal, Mechanical, and Spectroscopic Characterization of Polymers Using Miniaturized Thermal Probes. Journal of Vacuum Science & Technology B 2000, 18, 1322-1332.
16. Royall, P. G.; Kett, V. L.; Andrews, C. S.; Craig, D. Q. M., Identification of Crystalline and Amorphous Regions in Low Molecular Weight Materials Using Microthermal Analysis. Journal of Physical Chemistry B 2001, 105, 7021-7026.
17. Assche, G. V.; Mele, B. V., Interphase Formation in Model composites Studied by Micro-Thermal Analysis. Polymer 2002 43, 4605-4610.
18. Mallarino, S.; Chailan, J. F.; Vernet, J. L., Interphase Investigation in Glass Fibre Composites by Micro-Thermal Analysis. Composites: Part A 2005, 36, 1300-1306.
19. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M.; Branch, M. G., Localised Thermal Analysis of a Packaging Film. Thermochimica Acta 1999, 332, 143-149.
20. Ye, J.; Hasegawa, T.; Suzuki, A., Microthermal Analysis of the Melting Behavior in Zone-Drawn Isotactic Polypropylene Fibers. Journal of Polymer Science Part B 2004, 42, 3677-3681.
21. Gorbunov, V. V.; Fuchigami, N.; Hazel, J. L.; Tsukruk, V. V., Probing Surface Microthermal Properties by Scanning Thermal Microscopy. Langmuir 1999, 15, 8340-8343.
22. Grossetete, T.; Gonon, L.; Verney, V., Submicrometric Characterization of The Heterogeneous Photooxidation of Polypropylene by Microthermal Analysis. Polymer Degradation and Stability 2002, 78, 203-210.
23. Xie, W.; Liu, J. M.; Lee, C. W. M.; Pan, W. P., The Application of Micro-Thermal Analysis Technique in The Characterization of Polymer Blend. Thermochimica Acta 2001, 367-368, 135-142.
24. Asschea, G. V.; Ghanemb, A.; Lhostc, O.; Mele, B. V., Through-Thickness Analysis of The Skin Layer Thickness of Multi-Layered Biaxially-Oriented Polypropylene Films by Micro-Thermal Analysis. Polymer 2005, 46, 7132-7139.
25. Boroumand, F. A.; Hammiche, A.; Hill, G.; Lidzey, D. G., Characterizing Joule Heating in Polymer Light-Emitting Diodes Using a Scanning Thermal Microscope. Advanced materials 2004, 16, 252-256.
26. Boroumand, F. A.; Voigt, M.; Lidzey, D. G.; Hammiche, A.; Hill, G., Imaging Joule heating in a Conjugated-Polymer Light-Emitting Diode Using a Scanning Thermal Microscope. Applied Physics Letters 2004, 84, 4890-4892.
27. Ye, J.; Kojima, N.; Furuya, K.; Munakata, F.; Okada, A., Micro-Thermal Analysis of Thermal Conductance Distribution in Advanced Silicon Nitrides. Journal of Thermal Analysis and Calorimetry 2002, 69, 1031-1036.
28. Blanco, C.; Lu, S.; Appleyard, S. P.; Rand, B., The Stabilisation of Carbon Fibres Studied by Micro-Thermal Analysis. Carbon 2003, 41, 165-171.
29. Botterill, N. W.; Grant, D. M., Novel Micro-Thermal Characterisation of Thin Film NiTi Shape Memory Alloys. Materials Science and Engineering A 2004, 378, 424-428.
30. Murphy, J. R.; Andrews, C. S.; Craig, D. Q. M., Characterization of the Thermal Properties of Powder Particles Using Microthermal Analysis. Pharmaceutical Research 2003, 20, 500-507.
31. Yonemochi, E.; Hoshino, T.; Yoshihashi, Y.; Terada, K., Evaluation of the Physical Stability and Local Crystallization of Amorphous Terfenadine Using XRD-DSC and Micro-TA. Thermochimica Acta 2005, 432, 70-75.
32. Six, K.; Murphy, J.; Weuts, I.; Craig, D. Q. M.; Verreck, G.; Peeters, J.; Brewster, M.; Mooter, G. V. d., Identification of Phase Separation in Solid Dispersions of Itraconazole and Eudragit E100 Using Microthermal Analysis. Pharmaceutical Research 2003, 20, 135-138.
33. Hasegawa, S.; Hamauraa, T.; Furuyama, N.; Horikawa, S.; Kusai, A.; Yonemochi, E.; Terada, K., Uniformity and Physical States of Troglitazone in Solid Dispersions Determined by Electron Probe Microanalysis and Microthermal Analysis. International Journal of Pharmaceutics 2004, 280, 39-46.
34. Wouters, D.; Schubert, U. S., Nanolithography and Nanochemistry: Probe-Related Patterning Techniques and Chemical Modification for Nanometer-Sized Devices. Angewandte Chemie-International Edition 2004, 43, 2480-2495.
35. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating In Air. Applied Physics Letters 1990, 56, 2001-2003.
36. Avouris, P.; Hertel, T.; Martel, R., Atomic Force Microscope Tip-induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication. Applied Physics Letters 1997, 71, 285-287.
37. Snow, E. S.; Jernigan, G. G.; Campbell, P. M., The Kinetics and Mechanism of Scanned Probe Oxidation of Si. Applied Physics Letters 2000, 76, 1782-1784.
38. Irmer, B.; Kehrle, M.; Lorenz, H.; Kotthaus, J. P., Fabrication of Ti/TiOx Tunneling Barriers by Tapping Mode Atomic Force
Microscopy Induced Local Oxidation. Applied Physics Letters 1997, 71, 1733-1735.
39. Hsu, J. H.; Lai, H. W.; Lin, H. N.; Chuang, C. C.; Huang, J. H., Fabrication of Nickel Oxide Nanostructures by Atomic Force Microscope Nano-oxidation and Wet Etching. Journal of Vacuum Science & Technology B 2003, 21, 2599-2601.
40. Xiea, X. N.; Chung, H. J., Micro/nanoscopic Patterning of Polymeric Materials by Atomic Force Microscope Assisted Electrohydrodynamic Nanolithography. Journal of Applied Physics 2008, 103, 024307-1-024307-6.
41. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-Pen" Nanolithography. Science 1999, 283, 661-663.
42. Amro, N. A.; Xu, S.; Liu, G.-y., Patterning Surfaces Using Tip-Directed Displacement and Self-Assembly. Langmuir 2000, 16, 3006-3009.
43. Wilson, D. L.; Martin, R.; Hong, S.; Cronin-Golomb, M.; Mirkin, C. A.; Kaplan, D. L., Surface Organization and Nanopatterning of Collagen by Dip-Pen Nanolithography. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, 13660-13664.
44. Hyun, J.; Ahn, S. J.; Lee, W. K.; Chilkoti, A.; Zauscher, S., Molecular Recognition-Mediated Fabrication of Protein Nanostructures by Dip-Pen Lithography. Nano Letters 2002, 2, 1203-1207.
45. Cheung, C. L.; Camarero, J. A.; Woods, B. W.; Lin, T. W.; Johnson, J. E.; De Yoreo, J. J., Fabrication of Assembled Virus Nanostructures on Templates of Chemoselective Linkers Formed by Scanning Probe Nanolithography. Journal of the American Chemical Society 2003, 125, 6848-6849.
46. Kaholek, M.; Lee, W. K.; LaMattina, B.; Caster, K. C.; Zauscher, S., Fabrication of Stimulus-Responsive Nanopatterned Polymer Brushes by Scanning-Probe Lithography. Nano Letters 2004, 4, 373-376.
47. Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N., Engineering Silicon Oxide Surfaces Using Self-Assembled Monolayers. Angewandte Chemie International Edition 2005, 44, 6282-6304.
48. Fang, T. H.; Chang, W. J.; Wu, C. D., Effects of Temperature and Size on Contact Behavior of Self-Assembled Alkanethiol Cluster for Dip-Pen Nanolithography. Microelectronic Engineering 2008, 85, 223-226.
49. Liu, M. Z.; Amro, N. A.; Chow, C. S.; Liu, G. Y., Production of Nanostructures of DNA on Surfaces. Nano Letters 2002, 2, 863-867.
50. Lim, J.-H.; Ginger, D. S.; Lee, K.-B.; Heo, J.; Nam, J.-M.; Mirkin, C. A., Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces. Angewandte Chemie International Edition 2003, 42, 2309-2312.
51. Nam, J.-M.; Han, S. W.; Lee, K.-B.; Liu, X.; Ratner, M. A.; Mirkin, C. A., Bioactive Protein Nanoarrays on Nickel Oxide Surfaces Formed by Dip-Pen Nanolithography. Angewandte Chemie International Edition 2004, 43, 1246-1249.
52. Maynor, B. W.; Li, Y.; Liu, J., Au "Ink" for AFM "Dip-Pen" Nanolithography. Langmuir 2001, 17, 2575-2578.
53. Garno, J. C.; Yang, Y. Y.; Amro, N. A.; Cruchon-Dupeyrat, S.; Chen, S. W.; Liu, G. Y., Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography. Nano Letters 2003, 3, 389-395.
54. Zhang, H.; Mirkin, C. A., DPN-Generated Nanostructures Made of Gold, Silver, and Palladium. Chemistry of Materials 2004, 16, 1480-1484.
55. Li, Y.; Maynor, B. W.; Liu, J., Electrochemical AFM "Dip-Pen' Nanolithography. Journal of the American Chemical Society 2001, 123, 2105-2106.
56. Bullen, D.; Liu, C., Electrostatically Actuated Dip Pen Nanolithography Probe Arrays. Sensors and Actuators A 2006, 125, 504-511.
57. Sheehan, P. E.; Whitman, L. J.; King, W. P.; Nelson, B. A., Nanoscale Deposition of Solid Inks Via Thermal Dip Pen Nanolithography. Applied Physics Letters 2004, 85, 1589-1591.
58. Dryakhlushin, V. F.; Klimov, A. Y.; Rogov, V. V.; Shashkin, V. I.; Sukhodoev, L. V.; Volgunov, D. G.; Vostokov, N. V., Development of Contact Scanning Probe Lithography Methods for The Fabrication of Lateral Nano-dimensional Elements. Nanotechnology 2000, 11, 188-191.
59. Basu, A. S.; McNamara, S.; Gianchandani, Y. B., Scanning Thermal Lithography: Maskless, Submicron Thermochemical Patterning of Photoresist by Ultracompliant Probes. Journal of Vacuum Science and Technology B 2004, 22, 3217-3220.
60. King, W. P.; Saxena, S.; Nelson, B. A.; Weeks, B. L.; Pitchimani, R., Nanoscale Thermal Analysis of an Energetic Material. Nano Letters 2006, 6, 2145-2149.
61. Hua, Y.; Saxena, S.; Henderson, C. L.; King, W. P., Nanoscale Thermal Lithography by Local Polymer Decomposition Using a Heated Atomic Force Microscope Cantilever Tip. Journal of Micro/Nanolithography, MEMS, and MOEMS 2007, 6, 023012.
62. Lee, D.-W.; Oh, I.-K., Micro/Nano-heater Integrated Cantilevers for Micro/nano-lithography Applications. Microelectronic Engineering 2007, 84, 1041-1044.
63. Lee, J.-S.; Kang, M.-I.; Kim, S.; Lee, M.-S.; Lee, Y.-K., Growth of Zinc Oxide Nanowires by Thermal Evaporation on Vicinal Si(1 0 0) Substrate. Journal of Crystal Growth 2003, 249, 201-207.
64. Lee, W.; Jeong, M.-C.; Myoung, J.-M., Evolution of the Morphology and Optical Properties of ZnO Nanowires During Catalyst-free Growth by Thermal Evaporation. Nanotechnology 2004, 15, 1441-1445.
65. Ham, H.; Shen, G.; Cho, J. H.; Lee, T. J.; Seo, S. H.; Lee, C. J., Vertically Aligned ZnO Nanowires Produced by a Catalyst-free Thermal Evaporation Method and Their Field Emission Properties. Chemical Physics Letters 2005, 404, 69-73.
66. Xing, Y. J.; Xi, Z. H.; Zhang, X. D.; Song, J. H.; Wang, R. M.; Xu, J.; Xue, Z. Q.; Yu, D. P., Thermal Evaporation Synthesis of Zinc Oxide Nanowires. Applied Physics A: Materials Science and Processing 2005, 80, 1527-1530.
67. Jeong, M.-C.; Oh, B.-Y.; Lee, W.; Myoung, J.-M., Comparative Study on the Growth Characteristics of ZnO Nanowires and Thin Films by Metalorganic Chemical Vapor Deposition (MOCVD). Journal of Crystal Growth 2004, 268, 149-154.
68. Kim, S.-W.; Fujita, S.; Fujita, S., ZnO Nanowires with High Aspect Ratios Grown by Metalorganic Chemical Vapor Deposition Using Gold Nanoparticles. Applied Physics Letters 2005, 86, 153119.
69. Zeng, Y.-J.; Ye, Z.-Z.; Xu, W.-Z.; Zhu, L.-P.; Zhao, B.-H., Well-aligned ZnO Nanowires Grown on Si Substrate via Metal-organic Chemical Vapor Deposition. Applied Surface Science 2005, 250, 280-283.
70. Xiang, B.; Wang, P.; Zhang, X.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D.; Wang, D., Rational Synthesis of P-type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano Letters 2007, 7, 323-328.
71. Wang, J.; Gao, L., Hydrothermal Synthesis and Photoluminescence Properties of ZnO Nanowires. Solid State Communications 2004, 132, 269-271.
72. Sun, G.; Cao, M.; Wang, Y.; Hu, C.; Liu, Y.; Ren, L.; Pu, Z., Anionic Surfactant-assisted Hydrothermal Synthesis of High-aspect-ratio ZnO Nanowires and Their Photoluminescence Property. Materials Letters 2006, 60, 2777-2782.
73. Sun, Y.; George Ndifor-Angwafor, N.; Jason Riley, D.; Ashfold, M. N. R., Synthesis and Photoluminescence of Ultra-thin ZnO Nanowire/Nanotube Arrays Formed by Hydrothermal Growth. Chemical Physics Letters 2006, 431, 352-357.
74. Cao, B. Q.; Lorenz, M.; Rahm, A.; Von Wenckstern, H.; Czekalla, C.; Lenzner, J.; Benndorf, G.; Grundmann, M., Phosphorus Acceptor Doped ZnO Nanowires Prepared by Pulsed-laser Deposition. Nanotechnology 2007, 18, 455707.
75. Rahm, A.; Lorenz, M.; Nobis, T.; Zimmermann, G.; Grundmann, M.; Fuhrmann, B.; Syrowatka, F., Pulsed-laser Deposition and Characterization of ZnO Nanowires with Regular Lateral Arrangement. Applied Physics A: Materials Science and Processing 2007, 88, 31-34.
76. Son, H. J.; Jeon, K. A.; Kim, C. E.; Kim, J. H.; Yoo, K. H.; Lee, S. Y., Synthesis of ZnO Nanowires by Pulsed Laser Deposition in Furnace. Applied Surface Science 2007, 253, 7848-7850.
77. Wagner, R. S.; Ellis, W. C., Vapor-Liquid-Solid Mechnism of Single Crystal Growth. Applied Physics Letters 1964, 4, 89-90.
78. Wu, Y.; Yang, P., Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123, 3165-3166.
79. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science 1995, 270, 1791-1794.
80. Gudiksen, M. S.; Lieber, C. M., Diameter-Selective Synthesis of Semiconductor Nanowires. Journal of the American Chemical Society 2000, 122, 8801-8802.
81. Lu, X.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. Nano Letters 2003, 3, 93-99.
82. Yin, A. J.; Li, J.; Jian, W.; Bennett, A. J.; Xu, J. M., Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition. Applied Physics Letters 2001, 79, 1039-1041.
83. Zhang, X. Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Jin-Phillipp, N. Y.; Phillipp, F., Synthesis of Ordered Single Crystal Silicon Nanowire Arrays. Advanced Materials 2001, 13, 1238-1241.
84. Ott, A. W.; Chang, R. P. H., Atomic Layer-controlled Growth of Transparent Conducting ZnO on Plastic Substrates. Materials Chemistry and Physics 1999, 58, 132-138.
85. Bachari, E. M.; Amor, S. B.; Baud, G.; Jacquet, M., Photoprotective Zinc Oxide Coatings on Polyethylene Terephthalate Films. Materials Science and Engineering B 2001, 79, 165-174.
86. Fortunato, E.; Nunes, P.; Marquesa, A.; Costa, D.; guas, H. A.; Ferreira, I.; Costa, M. E. V.; Godinho, M. H.; Almeida, P. L.; Borges, J. P.; Martins, R., Transparent, Conductive ZnO:Al Thin Film Deposited on Polymer Substrates by RF Magnetron Sputtering. Surface and Coatings Technology 2002, 151-152, 247-251.
87. Banerjee, A. N.; Ghosh, C. K.; Chattopadhyay, K. K.; Minoura, H.; Sarkar, A. K.; Akiba, A.; Kamiya, A.; Endo, T., Low-temperature Deposition of ZnO Thin Films on PET and Glass Substrates by DC-sputtering Technique. Thin Solid Films 2006, 496, 112-116.
88. Ghule, A. V.; Lo, B.; Tzing, S. H.; Ghule, K.; Chang, H.; Ling, Y. C., Simultaneous Thermogravimetric Analysis and In Situ Thermo-Raman Spectroscopic Investigation of Thermal Decomposition of Zinc Acetate Dihydrate Forming Zinc Oxide Nanoparticles. Chemical Physics Letters 2003, 381, 262-270.
89. Ghule, A. V.; Ghule, K.; Chen, C. Y.; Chen, W. Y.; Tzing, S. H.; Chang, H.; Ling, Y. C., In Situ Thermo-TOF-SIMS Study of Thermal Decomposition of Zinc Acetate Dihydrate. Journal of Mass Spectrometry 2004, 39, 1202-1208.
90. Chen, H. J.; Jian, P. C.; Chen, J. H.; Wang, L.; Chiu, W. Y., Nanosized-hybrid Colloids of Poly(acrylic acid)/titania Prepared via In Situ Sol–Gel reaction. Ceramics International 2007, 33, 643-653.
91. Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H., Transport Properties and Thermoelectric Performance of (Zn1-yMgy)1-xAlxO. Journal of Materials Chemistry 1998, 8, 409-412.
92. Florescu, D. I.; Mourokh, L. G.; Pollak, F. H.; Look, D. C.; Cantwell, G.; Li, X., High Spatial Resolution Thermal Conductivity of Bulk ZnO (0001)…. Journal of Applied Physics 2002, 91, 890-892.
93. Lopes, C. M. A.; Felisberti, M. I., Thermal Conductivity of PET/(LDPE/AI) Composites Determined by MDSC. Polymer Testing 2004, 23, 637-643.