簡易檢索 / 詳目顯示

研究生: 許偉傑
Khor, Ooi-Kiat
論文名稱: 多孔型陽極氧化鋁製作與濕度感測器應用之研究
A study on the fabrication of porous aluminum oxide and its application to humidity sensor
指導教授: 鍾震桂
Chong, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 陽極氧化鋁混合式脈衝電壓焦耳熱
外文關鍵詞: Anodic Aluminum Oxide(AAO), Hybrid Pulse Anodization(HPA), Joule heat suppression
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文所推廣之複合式脈衝陽極氧化(Hybrid Pulse Anodization,HPA)技術的目的為抑制過多的焦耳熱的累積 ,並在較高的製程溫度與較高陽極氧化電壓中製備奈米多孔型陽極氧化鋁(Anodic Aluminum Oxide,AAO)模板。另外,以AAO製備成濕度感測器,並透過各式方法來增強該AAO的敏感度。本文以鋁薄片(Aluminum Foil)進行陽極氧化處理,而該氧化鋁在經過電場輔助的陽極氧化製程後,可以形成更厚的氧化鋁層,並產生規則排列的孔洞結構,其孔洞通道有極佳的垂直性。因此本實驗即選著了在草酸電解液中,針對各種陽極氧化條件,如:施加模式、較高正電壓、電解液溫度與擴孔時間下製備100 nm左右之陽極氧化鋁。再以場發射掃描式電子顯微鏡(FE-SEM)觀察AAO孔洞形貌,並使用ImageJ和WSxM等軟體去分析AAO孔洞表面形貌的SEM影像,加以探討當改變製程參數會有何影響並且量化之。另外,在AAO表面鍍上Pt薄膜作為電極,再透過不同的相對濕度來量測該感測器之電容值與電阻值。同時以磁場、濃度與電壓等來增強該感測器之整體敏感度。
    本實驗成功的以HPA在室溫下(25oC)且較高電壓與較短的時間下製備出高規則排列之AAO模板,讓整體製程更為節省與有效益。而在AAO的應用部分,各式的方法都可大幅的提升濕度感測器之敏感度,解決了AAO濕度感測器在低濕度條件下缺乏敏感度之問題。

    Anodic aluminum oxide (AAO) containing high-aspect ratio pore channels is widely used as a template for fabricating nanowires or other sensors. For AAO is prepared in oxalic acid, the anodizing potential is set as 40 V in order to balance the oxidation and dissolution rates. In practice, higher potential and high temperature are beneficial in increasing the pore size and growth rate. However, its increases the electrolyte temperature and therefore damages the pore structure. In addition, capacitive sensors based on anodic oxide aluminum film provide a fast and reliable means of sensing humidity. Moreover, the water molecules under a magnetic field preferentially form water clusters in which the dipole moments of the water molecules have a more orderly arrangement. In the present study, the joule heat problem is resolved by means of a high-potential hybrid pulse anodization (HPA) technique, in which a period of small negative potential is applied to suppress the Joule heating effect during the AAO preparation process. The SEM results show that HPA with an anodizing potential of 60 V results in an intact pore structure on the AAO surface. We also have investigated the sensitivity enhancement and its mechanism of the AAO humidity sensor by performing the sensing operation in the presence of an NbFeB magnet and increasing the concentration of electrolyte. The results show that the concentration and application of a magnetic field yields a linear-like relationship between the capacitance and the relative humidity.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3 本文架構 5 第二章 文獻回顧 7 2-1 鋁之陽極氧化 7 2-1-1 多孔型陽極氧化鋁結構 7 2-1-2 陽極氧化原理與反應 9 2-1-3 陽極氧化鋁成長機制 12 2-2 氧化鋁參數 14 2-2-1 溫度影響 14 2-2-2 施加電位 15 2-2-3 電解液種類與濃度 17 2-2-4 擴孔時間 19 2-3 陽極處理製程 20 2-3-1 兩階段陽極處理 20 2-3-2 預圖案化陽極氧化 21 2-3-3 脈衝陽極氧化 22 2-3-4 複合式脈衝陽極氧化 23 2-3-5 3D結構陽極氧化處理. 24 2-4 濕度感測器應用 26 2-4-1 AAO濕度感測器之原理與機制 27 2-4-2 水分子對磁場之影響 29 2-4-3 參數之影響 30 第三章 實驗方法與步驟 32 3-1 實驗流程 33 3-2 實驗設備 35 3-3 實驗原料 39 3-4 實驗步驟 40 3-4-1 陽極處理步驟 40 3-4-2 濕度感測器製備與量測步驟 42 3-5 觀測與分析方法 44 第四章 結果與討論 46 4-1 高電位(MA)對陽極氧化鋁之影響 46 4-1-1 DCA與HPA對AAO孔洞結構之影響 46 4-1-2 以擴孔時間探討高電壓之影響 50 4-1-3 溫度對AAO孔洞厚度之影響 53 4-2 AAO應用之濕度感測器 57 4-2-1 磁場對濕度感測器之影響 57 4-2-2 電解液濃度對濕度感測器之影響 64 4-2-3 AAO電壓對濕度感測器之影響 74 第五章 結論與未來展望 79 5-1 結論 79 5-2 未來工作 80 參考文獻 81

    [1] F. Solymosi, The bonding, structure and reactions of co2 adsorbed on clean and promoted metal-surfaces, Journal of Molecular Catalysis, 65(1991) 337-58.
    [2] H. Masuda, F. Hasegawa, S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, Journal of The Electrochemical Society, 144(1997) L127-L30.
    [3] A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, 84(1998) 6023-6.
    [4] H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Japanese Journal of Applied Physics, 37(1998) L1340-L2.
    [5] M. A. Kashi, A. Ramazani, M. Raoufi, A. Karimzadeh, Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method, Thin Solid Films, 518(2010) 6767-72.
    [6] R. K. Nahar, Study of the performance degradation of thin film aluminum oxide sensor at high humidity, Sensors and Actuators B-Chemical, 63(2000) 49-54.
    [7] R. K. Nahar, V. K. Khanna, Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor, Sensors and Actuators B-Chemical, 46(1998) 35-41.
    [8] V. K. Khanna, R. K. Nahar, Surface conduction mechanisms and the electrical-properties of Al2O3 humidity sensor, Applied Surface Science, 28(1987) 247-64.
    [9] G. E. Thompson, Porous anodic alumina: Fabrication, characterization and applications, Thin Solid Films, 297(1997) 192-201.
    [10] F. Keller, M. S. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminium, Journal of The Electrochemical Society, 100(1953) 411-9.
    [11] Z. Wu, C. Richter, L. Menon, A study of anodization process during pore formation in nanoporous alumina templates, Journal of The Electrochemical Society, 154(2007) E8-E12.
    [12] F. Y. Li, L. Zhang, R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chemistry of Materials, 10(1998) 2470-80.
    [13] S. K. Thamida, H. C. Chang, Nanoscale pore formation dynamics during aluminum anodization, Chaos, 12(2002) 240-51.
    [14] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, 84(1998) 6023-6.
    [15] O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Applied Physics Letters, 72(1998) 1173-5.
    [16] I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, G. Marx, The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime, Applied Surface Science, 222(2004) 215-25.
    [17] V. P. Parkhutik, V. I. Shershulsky, Theoretical modeling of porous oxide-growth on aluminum, Journal of Physics D-Applied Physics, 25(1992) 1258-63.
    [18] Y. Li, Z. Y. Ling, S. S. Chen, J. C. Wang, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology, 19(2008) 225604.
    [19] L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing, H. Xinhua, Novel aao films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chemical Communications, 46(2010) 309.
    [20] W. Chen, J.-S. Wu, X.-H. Xia, Porous anodic alumina with continously manipulated size/cell, ACS NANO, 2(2008) 959-65.
    [21] T. Aerts, I. De Graeve, H. Terryn, Control of the electrode temperature for electrochemical studies: A new approach illustrated on porous anodizing of aluminium, Electrochemistry Communications, 11(2009) 2292-5.
    [22] W. Lee, R. Ji, U. Goesele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat Mater, 5(2006) 741-7.
    [23] H. T. K. Ebihara, M. Nagayama,, Structure and density of anodic oxide films formed on aluminum in sulfuric acid solution, J Met Finish Soc Japan, 33(1982) 156–64.
    [24] Osulliva.Jp, G. C. Wood, Morphology and mechanism of formation of porous anodic films on aluminium, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 317(1970) 511-&.
    [25] G. E. Thompson, G. C. Wood, Porous anodic film formation on aluminum, Nature, 290(1981) 230-2.
    [26] S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochimica Acta, 51(2005) 827-33.
    [27] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, Journal of The Electrochemical Society, 153(2006) B384-B91.
    [28] Y. F. Jia, H. H. Zhou, P. Luo, S. L. Luo, J. H. Chen, Y. F. Kuang, Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid, Surface & Coatings Technology, 201(2006) 513-8.
    [29] Z. H. He, L. J. Yao, M. J. Zheng, L. Ma, S. H. He, W. Z. Shen, Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall, Physica E-Low-Dimensional Systems & Nanostructures, 43(2010) 366-71.
    [30] Z. S. Feng, X. J. Chen, J. J. Chen, J. Hu, A novel humidity sensor based on alumina nanowire films, Journal of Physics D-Applied Physics, 45(2012).
    [31] H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268(1995) 1466-8.
    [32] H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 35(1996) L126-L9.
    [33] H. Masuda, K. Kanezawa, K. Nishio, Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope, Chemistry Letters, (2002) 1218-9.
    [34] M. Jaafar, D. Navas, M. Hernández-Vélez, J. L. Baldonedo, M. Vázquez, A. Asenjo, Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation, Surface Science, 603(2009) 3155-9.
    [35] C. Y. Liu, A. Datta, Y. L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, Applied Physics Letters, 78(2001) 120.
    [36] B. Chen, K. Lu, Moiré pattern nanopore and nanorod arrays by focused ion beam guided anodization and nanoimprint molding, Langmuir, 27(2011) 4117-25.
    [37] S.-H. Chen, D.-S. Chan, C.-K. Chen, T.-H. Chang, Y.-H. Lai, C.-C. Lee, Nanoimprinting pre-patterned effects on anodic aluminum oxide, Japanese Journal of Applied Physics, 49(2010) 015201.
    [38] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, Square and triangular nanohole array architectures in anodic alumina, Advanced Materials, 13(2001) 189-92.
    [39] J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. R. Schilling, U. GöSele, Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers, Journal of Applied Physics, 94(2003) 4757.
    [40] S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, G. Ozin, Highly ordered nanosphere imprinted nanochannel alumina (nina), Advanced Materials, 16(2004) 2193-6.
    [41] W. Lee, R. Scholz, U. GöSele, A continuous process for structurally well-defined al2o3nanotubes based on pulse anodization of aluminum, Nano Letters, 8(2008) 2155-60.
    [42] W. Lee, The anodization of aluminum for nanotechnology applications, JOM, 62(2010) 57-63.
    [43] W. Lee, J.-C. Kim, U. Gösele, Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions, Advanced Functional Materials, 20(2010) 21-7.
    [44] J. Li, C. Li, X. Gao, Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance, Applied Surface Science, 257(2011) 10390-4.
    [45] T. Nagaura, F. Takeuchi, S. Inoue, Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing, Electrochimica Acta, 53(2008) 2109-14.
    [46] T. Yanagishita, K. Yasui, T. Kondo, Y. Kawamoto, K. Nishio, H. Masuda, Antireffection polymer surface using anodic porous alumina molds with tapered holes, Chemistry Letters, 36(2007) 530-1.
    [47] K. X. Sun, G. W. Meng, Q. Huang, X. L. Zhao, C. H. Zhu, Z. L. Huang, et al., Gap-tunable ag-nanorod arrays on alumina nanotip arrays as effective sers substrates, Journal of Materials Chemistry C, 1(2013) 5015-22.
    [48] D. Losic, D. Losic, Preparation of porous anodic alumina with periodically perforated pores, Langmuir, 25(2009) 5426-31.
    [49] A. Santos, L. Vojkuvka, M. Alba, V. S. Balderrama, J. Ferre-Borrull, J. Pallares, et al., Understanding and morphology control of pore modulations in nanoporous anodic alumina by discontinuous anodization, Physica Status Solidi a-Applications and Materials Science, 209(2012) 2045-8.
    [50] D. Losic, M. Lillo, D. Losic, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization, Small, 5(2009) 1392-7.
    [51] A. C. Power, A. J. Betts, J. F. Cassidy, Silver nanoparticle polymer composite based humidity sensor, Analyst, 135(2010) 1645-52.
    [52] J. H. Sohn, M. Atzeni, L. Zeller, G. Pioggia, Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares, Sensors and Actuators B-Chemical, 131(2008) 230-5.
    [53] R. Rosty, B. Kebbekus, V. Zaitsev, The testing of a semiconductor-based adsorption modified photosensitive sensor for its response to a volatile organic compound, oxygen, humidity and temperature, Sensors and Actuators B-Chemical, 107(2005) 347-52.
    [54] M. Nocun, W. Bugajski, Humidity sensor based on porous glass-ceramic, Optica Applicata, 30(2000) 613-8.
    [55] W. M. Qu, J. U. Meyer, A novel thick-film ceramic humidity sensor, Sensors and Actuators B-Chemical, 40(1997) 175-82.
    [56] M. Pelino, C. Colella, C. Cantalini, M. Faccio, G. Ferri, A. Damico, Microstructure and electrical-properties of an alpha-hematite ceramic humidity sensor, Sensors and Actuators B-Chemical, 7(1992) 464-9.
    [57] F. Ansbacher, A. C. Jason, Effects of water vapour on the electrical properties of anodized aluminium, Nature, 171(1953) 177-8.
    [58] V. K. Khanna, R. K. Nahar, Effect of moisture on the dielectric-properties of porous alumina films, Sensors and Actuators, 5(1984) 187-98.
    [59] V. K. Khanna, R. K. Nahar, Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities, Journal of Physics D-Applied Physics, 19(1986) L141-L5.
    [60] I. H. Ibrahim, Biophysical properties of magnetized distilled water, Egyptian Journal of Solids, 29(2006) 363-9.
    [61] X. F. Pang, D. Bo, The changes of macroscopic features and microscopic structures of water under influence of magnetic field, Physica B-Condensed Matter, 403(2008) 3571-7.
    [62] M. A. Kashi, A. Ramazani, H. Abbasian, A. Khayyatian, Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization, Sensors and Actuators a-Physical, 174(2012) 69-74.
    [63] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide, Sensors and Actuators B: Chemical, 141(2009) 441-6.
    [64] L. Yi, L. Zhiyuan, H. Xing, L. Yisen, C. Yi, Formation and microstructures of unique nanoporous aao films fabricated by high voltage anodization, Journal of Materials Chemistry, 21(2011) 9661.
    [65] D. Li, L. Zhao, C. Jiang, J. G. Lu, Formation of anodic aluminum oxide with serrated nanochannels, Nano Letters, 10(2010) 2766-71.
    [66] S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: Burning, Electrochemical and Solid-State Letters, 7(2004) B21.
    [67] T. Morimoto, M. Nagao, F. Tokuda, Relation between amounts of chemisorbed and physisorbed water on metal oxides, Journal of Physical Chemistry, 73(1969) 243-&.
    [68] R. K. Nahar, V. K. Khanna, W. S. Khokle, On the origin of the humidity-sensitive electrical-properties of porous aluminum-oxide, Journal of Physics D-Applied Physics, 17(1984) 2087-95.
    [69] X. F. Pang, B. Deng, B. Tang, Influences of magnetic field on macroscopic properties of water, Modern Physics Letters B, 26(2012).
    [70] X. F. Pang, B. Deng, Investigation of changes in properties of water under the action of a magnetic field, Science in China Series G-Physics Mechanics & Astronomy, 51(2008) 1621-32.
    [71] G. Gopal Khan, A. K. Singh, K. Mandal, Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of f + center defects, Journal of Luminescence, 134(2013) 772-7.
    [72] J. H. Chen, C. P. Huang, C. G. Chao, T. M. Chen, The investigation of photoluminescence centers in porous alumina membranes, Applied Physics a-Materials Science & Processing, 84(2006) 297-300.
    [73] G. D. Sulka, W. J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochimica Acta, 54(2009) 3683-91.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE