簡易檢索 / 詳目顯示

研究生: 宋槐耘
Song, Huai-Yun
論文名稱: 光學讀寫頭聚焦控制與其空間姿態虛擬實境輔助分析
Optical Pickup Head Focusing Control with Virtual-Reality-Aided Spatial Attitude Analysis
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 174
中文關鍵詞: 分數微積分系統鑑別分數階控制器閉迴路控制虛擬實境
外文關鍵詞: fractional calculus, system identification, fractional order controller, feedback control, virtual reality
相關次數: 點閱:144下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重於光學讀寫頭之聚焦控制與虛擬實境的視覺化發展,由於光學讀寫頭系統固定端使用高分子材料做為阻尼,其具有遲滯(hysteresis)、預載(precondition)等非線性時變特性,因此首先利用光學讀寫頭分數微分(fractional derivative)動態模型鑑別為基礎來做系統鑑別,透過靜平衡實驗求得靜態模型常數,再利用頻域分析得到阻尼項之高分子材料動態特性,最後再透過潛變響應、解析解、數值解與實驗數據等等相比較以驗證模型的正確性;接著再利用數位之分數階PID控制器的設計與實現,結合前面所推得的系統模型,做聚焦之閉迴路控制(feedback control),並探討分數階與整數階PID控制器之控制性能,比較控制時模擬響應與實際響應之誤差以驗證模型與控制器之正確性,進而得到最佳之控制器參數完成聚焦控制;最後再利用虛擬實境(virtual reality)與擴增實境(augmented reality)技術,實現光學讀寫頭之三維姿態識別與追蹤,並透過虛擬環境達到視覺化輔助分析的功能,並進一步透過虛擬之響應模擬與實際之光學讀寫頭運動姿態比較與誤差修正,實現設計、製造與測試之改善與發展。

    In this thesis, the primary objective is focusing control and developing virtual reality with the suspension system of optical pickup head which is built-in the CD-ROM. Since the suspension system use polymer as a damping device, it has nonlinear and time-varying properties such as hysteresis, precondition, creep deformation and relaxation. Traditional rheological and fractional differential damping models are compared and justified by utilizing creeping experiment. A fractional derivative dynamic model is established for system identification. The parameters of spring constant and mass are obtained through static test. In establishing dynamic suspension model, a fractional derivative is employed to model the damping of polymer material. The input sinusoidal vibration to system responses by using analytical solution, numerical solution and experimental test are obtained to compare and validate system model. Next, the system model which has been identified is combined with fractional-order PID controller to implement focusing control. Also, the control performance of fractional-order controller and integer-order controller to achieve the focusing control by tuning the parameters of controller are compared. Last, by using the virtual reality and augmented reality technique, the three dimension attitude identification and tracking are realized. Though the virtual reality, the performance of optical pickup head can be compared with its virtual model for error correction in system development. This technique also can generate the function of visually aided analysis and realize the design, manufacture and test in the system development.

    摘要 I Extended Abstract II 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3文獻回顧 2 1-3.1 光學讀寫頭系統模型 2 1-3.2 光學讀寫頭控制器設計 4 1-3.3 分數階PID控制器 6 1-4 研究目標與方法 7 1-5 本文架構 9 第二章 分數階微積分 10 2-1 數學工具 10 2-1.1 Gamma函數 10 2-1.2 Beta函數 10 2-1.3 Mittag-Leffler函數 10 2-2 分數階微積分之基礎理論 11 2-2.1 Riemann-Liouville 分數積分 11 2-2.2 Riemann-Liouville 分數微分 12 2-2.3 Caputo 分數微分 12 2-2.4 Grunwald-Letnikov 微分 12 2-2.5 拉式轉換 13 2-3 線性非時變分數階系統 14 2-3.1 線性非時變系統之分數微分方程及其時域求解 15 2-3.2線性非時變系統分數微分方程之頻域分析方法 16 2-3.3 分數階線性非時變系統之穩定性分析 18 2-4 分數階微分方程式之系統響應探討 19 2-4.1 一階ODEs與FDEs之時域與頻域分析 19 2-4.2 二階ODEs與FDEs之時域與頻域分析 21 2-5 分數階控制器( controller)探討 23 2-5.1 控制器 23 2-5.2 控制器 24 2-6 總結 25 第三章 系統鑑別 26 3-1 環境設置 26 3-1.1 實驗設備介紹 26 3-1.2 實驗設備架設 30 3-2 系統與外界干擾 31 3-2.1 磁力干擾 31 3-2.2 環境干擾 33 3-3 光學讀寫頭承載系統之特性 34 3-3.1 潛變響應 34 3-3.2 光學讀寫頭承載系統之穩態時間量測 37 3-4 光學讀寫頭系統鑑別 38 3-4.1 系統鑑別介紹 38 3-4.2 系統模型分析 39 3-4.3 光學讀寫頭承載系統之模型建立 41 3-5 模型驗證與誤差分析 51 3-6 總結 55 第四章 系統控制 56 4-1 前言 56 4-2 實驗配置 56 4-3 受控系統模型量測 58 4-4 系統穩定性分析 62 4-5 整數階閉迴路控制程序 64 4-5.1 無內回授之負回授控制 64 4-5.2 有內回授之負回授控制 68 4-5.3 等效之模型擬合 86 4-5.4 具內迴路之控制等效模型-整數階PID控制器參數穩定範圍 98 4-6 分數階閉迴路控制程序 100 4-6.1分數階PID控制器設計與實現 101 4-6.2基於分數階PID控制器之控制結果 105 4-6.3 等效模型之擬合 117 4-6.4具內迴路之控制等效模型-分數階PID控制器參數穩定範圍 122 4-7 總結 122 第五章 虛擬實境應用發展 124 5-1 前言 124 5-2 實驗配置 124 5-3 攝影機參數校正 130 5-4虛擬實境設計實現 133 5-4.1 標記實作與角點偵測 133 5-4.2 標記之座標定位-透過編碼與解碼 137 5-4.3 虛擬3D模型建立與虛實結合 141 5-5 虛擬光學成像 149 5-5.1 光線追蹤 (Ray tracing) 149 5-5.2 虛擬光學成像實現 151 5-6 實際量測結果驗證 156 5-7 虛擬實境對於光學讀寫頭之發展與應用 164 5-7.1 基於自動化發展之設計模擬與測試 164 5-7.2基於實際已知系統模型之虛擬光學讀寫頭模型響應模擬 167 5-8 總結 169 第六章 結論與未來展望 171 6-1 結論 171 6-2 未來展望 172 參考文獻 173

    [1]卓煥昌,「形狀記憶合金彈簧懸吊系統用於光碟機平台減振之研究」,大葉大學機械工程研究所碩士論文,中華民國九十五年。
    [2]劉政運,「光學讀寫頭承載系統之鑑別與干擾控制」,國立成功大學機械工程研究所碩士論文,中華民國一百零四年。
    [3]李文,趙慧敏,「分數階控制器設計方法與振動控制性能分析」,科學出版社,西元2014年六月。
    [4]鄭宗明,「開發虛擬實境系統中互動式電腦實體模型之可變形屬性之研究」,朝陽科技大學工業工程與管理系,中華民國九十二年。
    [5]C. P. Chao, C. L. Lai and J. S. Huang, “Nonlinear dynamic analysis and actuation strategy for a three-DOF four-wire type optical pickup,” Sensors and actuator A, pp.171-182, 2003.
    [6]C. P. Chao, C. W. Chiu and C. Y. Shen, “Precision positioning of a three-axis optical pickup via a double phase-lead compensator equipped with auto-tuned parameters,” Microsystem Technologies, vol. 16, pp.117-141, 2008.
    [7]沈建佑,「四弦型光學讀寫頭控制器與觀測器之實作與驗證」,中原大學機械工程研究所碩士論文,中華民國九十二年。
    [8]鍾明勳,「壓電式光學讀寫頭精密定位之強健控制器設計與驗證」,中原大學機械工程研究所碩士論文,中華民國九十三年。
    [9]李繼瑜,「光學讀寫頭之自動調變演算法設計與實作驗證」,中原大學機械工程研究所碩士論文,中華民國九十四年。
    [10]N. Minorsky, “Directional stability of automatically steered bodies,” Journal of American Society for Naval Engineers, vol. 34, pp.280-309, 1922.
    [11]J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Trans ASME, vol. 64, pp.759-768, 1942.
    [12]B. M. Vinagre, I. Petras, P. Merchan and L. Dorcak, “Two digital realizations of fractional controllers: Application to temperature control of a solid,” IEEE, pp. 1764-1767, 2001.
    [13]J. Y. Cao and B. G. Cao, “Design of a Fractional Order PID Controller Based on Particle Swarm Optimization,” IEEE, 1st, pp. 1-6, 2006.
    [14]J. Cervera and A. Banos, “Tuning of Fractional PID Controller by Using QFT,” IEEE, pp. 5402-5407, 2006.
    [15]J. Y. Cao, J. Liang and B. G. Cao, “Optimization of Fractional Order PID Controllers Based on Genetic Algorithms,” IEEE, vol. 9, pp. 5686-5689, 2005.
    [16]D. Maiti, S. Biswas and A. Konar, “Optimization of Fractional Order PID Controllers Based on Genetic Algorithms,” ReTIS, 2008.
    [17]J. M. Kimeu, “Fractional Calculus: Definitions and Applications,” Western Kentucky University, 2009.
    [18]C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu, “Fractional-order Systems and Controls,” Springer, 2010.
    [19]T. T. Hartley, C. F. Lorenzo, “A Solution to the Fundamental Linear Fractional Order Differential Equation,” NASA/TP-1998-208693, 1998.
    [20]D. Gorinevsky, “Model identification,” Standford university, 2002-2003.
    [21]S. Nagarajaiah, “System identification,” RICE university, 2009.
    [22]A. Germant, “A method of analyzing experimental results obtained from elasto-viscous bodies,” Phys. 7, pp. 311-317, 1936.
    [23]G. F. Franklin, J. D. Powell and A. Emami-Naeini, “Feedback Control of Dynamic Systems, 5e,” Technical Typesetters, 2006.
    [24]Z. Y. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown Orientations,” IEEE Int. Conf. on Computer Vision, pp. 666-673, 1999.
    [25]F. Mokhtarian and R. Suomela, “Robust Image Corner Detection Trough Curvature Scale Space,” TPAMI, Vol. 20, No. 12, 1998.
    [26]Shi and C. Tomasi, “Good Features to Track,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593-600, 1994.
    [27]D. Lowe, “Object Recognition from Local Scale-Invariant Features,” Proceedings of the International Conference on Computer Vision, pp. 1150-1157, 1994.
    [28]林柏伸,「微組裝系統之光機分析與驗證」,國立成功大學機械工程學系碩士論文,中華民國九十九年。
    [29]G. H. Spencer and M. V. R. K. Murty, “General Ray-Tracing Procedure,” Journal of the Optical Society of America, Vol. 52, No. 6, pp. 672-678, 1962.

    下載圖示 校內:2018-08-01公開
    校外:2018-08-01公開
    QR CODE