| 研究生: |
侯育琳 Hou, Yu-Lin |
|---|---|
| 論文名稱: |
以解析方法分析單一液滴吸收溫室氣體之現象 An Analytical Analysis on Greenhouse Gas Absorption by a Water Droplet |
| 指導教授: |
洪振益
Hung, Chen-I 陳維新 Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 溫室氣體吸收 、二氧化碳 、氧化亞氮 、甲烷 、臭氧 、液滴 、質量擴散係數 、半解析方法 、一大氣壓力與壓力升高 、聲波擾動 |
| 外文關鍵詞: | Greenhouse gas absorption, CO2, N2O, CH4 and O3, Water droplet, Mass diffusion number, Semi-analytical solution, Atmospheric and elevated pressures, Acoustic excitation |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用液滴來吸收氣體為溫室氣體減量的途徑之一,尤其是針對 CO2而言,為了瞭解單一液滴吸收溫室氣體的過程,本研究利用理論分析的方式探討一大氣壓力和壓力增加下靜止液滴吸收溫室氣體的質傳現象,所考慮的溫室氣體分別為CO2,N2O,CH4和O3。然而因為在交界面有分段連續函數的關係,故不能用完全解析的方式來分析此現象,取而代之,本研究所使用的方法為半解析方式,且因為這些溫室氣體的質量擴散數較小的緣故,所以質傳均由液相控制,根據其結果可以建立無因次吸收量的函數。本研究探討的溫度範圍為280-350K,壓力分布為1-20atm,隨著溫度和壓力的升高會使吸收量有所提升,若要使其有明顯的增加的話,只要提升溫度即可。更進一步,在溫度為298K,壓力為1atm下,利用液滴吸收CO2,並在液滴表面給予一個聲波擾動來控制液滴吸收溶質之情形,且引進兩個重要性參數,無因次振幅與無因次頻率,且其範圍分別為0.1-0.99與0.1-1000,若要使液滴吸收量增加,可選擇較大的無因次振幅,與較小的無因次頻率來進行吸收。針對無因次頻率等於1時,液滴則須控制在無因次時間為0.31-0.36,方能達到較大的吸收量。
Gas absorption by droplets is an important route to reduce greenhouse gas emissions, especially for carbon dioxide. To recognize the fundamental absorption processes of greenhouse gases by single droplets, the mass transport phenomena of greenhouse gas uptake by a quiescent water droplet at atmospheric and elevated pressures are analyzed theoretically and four common greenhouse gases of CO2, N2O, CH4 and O3 are taken into consideration. On account of piecewise function encountered at the droplet surface, it is impossible to obtain a fully analytical solution for describing the mass transfer process. Instead, a semi-analytical method is developed to predict the mass diffusion between the gas phase and the liquid phase. The obtained results indicate that, by virtue of the four greenhouse gases characterized by low mass diffusion number, the entire mass transfer is controlled by the liquid phase and a unified formula has been successfully established to aid in estimating the dimensionless solute uptake process. For the ambient temperature and pressure in the ranges of 280-350K and 1-20 atm, respectively, it is found that increasing the two parameters will intensify the solute absorption amount significantly, whereas the absorption process can be accelerated by increasing temperature alone. To recognize the CO2 capture dynamic by a quiescent water droplet, a theoretical analysis under the conditions of 25°C and 1atm is performed in this work, with emphasis on the effect of acoustic excitation upon the absorption process. The dimensionless fluctuated amplitude and frequency of the acoustic wave are in the ranges of 0.1-0.99 and 0.1-1000, respectively. The analyses suggest that an acoustic wave with smaller amplitude and higher frequency leads to a more drastic energy decay in the droplet due to the role of damping played by the droplet. In contrast, a pressure excitation with larger amplitude and lower frequency has a pronounced effect on the mass transfer process, as a result of higher efficiency of energy penetrating into the liquid phase. From the perspective of achieving carbon capture and storage (CCS), the acoustic excitation with the dimensionless frequency of unity is recommended to capture CO2 by a droplet and the exposure time of the droplet should be controlled at the dimensionless aqueous diffusion time (τι) of 0.31-0.36.
1. Annaswamy, A.M., Ghoniem, A.F., “Active Control in Combustion Systems,” IEEE, Vol.15, pp.49-63, 1995.
2. Ashmore, M.R., Bell, J.N.B., “The role of ozone in global change,” Annals of Botany, Vol.67, pp.39-48, 1991.
3. Atchariyawut, S., Jiraratananon, R., Wang, R., “Mass transfer study and modeling of gas–liquid membrane contacting process by multistage cascade model for CO2 absorption,” Separation and Purification Technology, Vol.63, pp.15-22, 2008.
4. Bahadori, A., Vuthaluru, H.B., “New method accurately predicts carbon dioxide equilibrium adsorption isotherms,” International Journal of Greenhouse Gas Control, Vol.3, pp.768-772, 2009.
5. Barker, D.J., Turner, S.A., Napier-Moore, P.A., Clark, M., Davison, J.E., “CO2 capture in the cement industry,” Energy Procedia, Vol.1, pp.87-94, 2009.
6. Bounaceur, R., Lape, N., Roizard, D., Vallieres, C., Favre, E., “Membrane processes for post-combustion carbon dioxide capture: A parametric study,” Energy, Vol. 31, pp. 2556-2570, 2006.
7. Burden, R.L., Faires, J.D., “Numerical Analysis,” Thomson Brooks, Australia, 2005.
8. Chen, W.H., “An analysis of gas absorption by a liquid aerosol in a stationary environment,” Atmospheric Environment, Vol.36, pp.3671-3683, 2002.
9. Chen, W.H., “Scavenging waves and influence distances of gas absorption around single liquid aerosols in clouds,” Atmospheric Environment, Vol.40, pp.500-511, 2006.
10. Chiesa, P., Consonni, S., Kreutz, T., Williams, R., “Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. PartA: Performance and emissions,” International Journal of Hydrogen Energy, Vol.30, pp.747-769, 2005.
11. Choi, H., Moin, P., Kim, J., “Active turbulence control for drag reduction in wall-bounded flows,” The Journal of Fluid Mechanics, Vol.262, pp.75-110, 1994.
12. Cohen, J.M., Banaszuk, A., Hibshman, J.R., Anderson, T.J., Alholm, H.A., “Active Control of Pressure Oscillations in a Liquid-Fueled Sector Combustor,” Journal of Engineering for Gas Turbines and Power, Vol.130, pp.051502, 2008.
13. Cottet, A., Neumeier, Y., Scarborough, D., Bibik, O., Lieuwen T., “Acoustic absorption measurements for characterization of gas mixing,” Journal of the Acoustical Society of America, Vol.116, pp.2081-2088, 2004.
14. Damen, K., Troost, M.V., Faaij, A., Turkenburg, W., “A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies,” Progress in Energy and Combustion Science, Vol.32, pp.215-246, 2006.
15. DeFries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B., de Souza Jr, C., “Earth observations for estimating greenhouse gas emissions from deforestation in developing countries,” Environmental Science & Policy, Vol.10, pp.385-394, 2007.
16. Descamps, C., Bouallou, C., Kanniche, M., “Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal,” Energy, Vol.33, pp.874-881, 2008.
17. Docquier, N., Candel, S., “Combustion control and sensors: a review,” Progress in Energy and Combustion Science, Vol.28, pp.107-150, 2002.
18. Doinikov, A.A., Bouakaz, A., “Acoustic microstreaming around a gas bubble,” Journal of the Acoustical Society of America, Vol.127, pp.703-709, 2010.
19. Ebeling, J., Yasue, M., “Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits,” Phil. Trans. R. Soc. B, Vol.363, pp.1917-1924, 2008.
20. Enkvist, P.A., Nauclér, T., Rosander, J., “A cost curve for greenhouse gas reduction,” The McKinsey Quarterly, Vol.1, pp.35-45, 2007.
21. Farla, J.C.M., Hendriks, C.A., Blok, K., “Carbon dioxide recovery from industrial processes,” Climatic Change, Vol.29, pp.439-461, 1995.
22. Felippe de Souza, J.A.M., Caetano, M.A.L., Gherardi, D.F.M., Yoneyama, T., “Applied Engineering on Biosystems—The reduction in global warming,” MACMESE'09 Proceedings of the 11th WSEAS international conference on mathematical and computational methods in science and engineering, pp.214-219, 2009.
23. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D., “Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse gas Control, Vol.2, pp.9-20, 2008.
24. Fujisawa, N., Takeda, G., “Flow control around a circular cylinder by internal acoustic excitation,” Journal of Fluids and Structures, Vol.17, pp.903-913, 2003.
25. Gielen, D., “CO2 removal in the iron and steel industry,” Energy Conversion and Management, Vol.44, pp.1027-1037, 2003.
26. Gonzalez-Garza, D., Rivera-Tinoco, R., Bouallou, C., “Comparison of ammonia, monoethanolamine, diethanolamine and methyldiethanolamine solvents to reduce CO2 greenhouse gas emissions,” Chemical Engineering Transitions, Vol.18, pp.279-284, 2009.
27. Hart, A., Gnanendran, N., “Cryogenic CO2 capture in natural gas,” Energy Procedia, Vol.1, pp.697-706, 2009.
28. Hepburn, C., Stern, N., “A new global deal on climate change,” Oxford Review of Economic Policy, Vol.24, pp.259-279, 2008.
29. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., “Climate Change 2001: The ScientiÞc Basis,” Cambridge University Press, Cambridge, 2001.
30. Hufton, J., Golden, T., Quinn, R., Kloosterman, J., Wright, A., Schaffer, C., Hendershot, R., White, V., Fogash, F., “Advanced Hydrogen and CO2 Capture Technology for Sour Syngas,” Energy Procedia, Vol.4, pp.1082-1089, 2011.
31. Jain, A.K., Briegle, B.P., Minschwan, K., Wuebble, D.J., “Radiative forcings and global warming potentials of 39 greenhouse gases,” Journal of Geophysical Research, Vol.105, pp.20773-20790, 2000.
32. Javed, K.H., Mahmud, T., Purba, E., “The CO2 capture performance of a high-intensity vortex spray scrubber,” Chemical Engineering Journal, Vol.162, pp.448-456, 2010.
33. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.M., Bouallou, C., “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture,” Applied Thermal Engineering, Vol.30, pp.53-62, 2010.
34. Kook, H., Mongeau, L., Franchek, M.A., “Active control of pressure fluctuations due to flow over helmholtz resonators,” Journal of Sound and Vibration, Vol.61, pp.61-76, 2002.
35. Koumoutsakos, P., Mezic, I., “Control of fluid flow,” Springer, New York, 2006.
36. Kreutz, T., Williams, R., Consonni, S., Chiesa, P., “Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part B. Economic analysis,” International Journal of Hydrogen Energy, Vol.30, pp.769-784, 2005.
37. Kreutz, T.G., Williams, R.H., Socolow, R.H., Chiesa, P., Lozza, G., “Production of hydrogen and electricity from coal with CO2 capture,” Sixth greenhouse gas control technologies conference, 2002.
38. Li, H., Yan, J., Yan, J., Anheden, M., “Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system,” Applied Energy, Vol.86 , pp.203-213, 2009.
39. Maceiras, R., Alves, S.S., Cancela, M.A., Álvarez, E., “Effect of bubble contamination on gas–liquid mass transfer coefficient on CO2 absorption in amine solutions,” Chemical Engineering Journal, Vol.137, pp.422-427, 2008.
40. McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., “Climate change 2001: impacts, adaptation, and vulnerability,” Cambridge University Press, Cambridge, 2001.
41. Myers, G.E., “Analytical Methods in Conduction Heat Transfer,” Genium Pub. Corp., New York, 1987.
42. Nilsson, A., Petersson, F., Jönsson, H., Laurell, T., “Acoustic control of suspended particles in micro fluidic chips,” Miniaturisation for Chemistry, Biology & Bioengineering, Vol.4, pp.131-135, 2004.
43. Nordhaus, W.D., “To slow or not to slow: the economics of the greenhouse effect,” The Economic Journal, Vol.101, pp.920-937, 1991.
44. Olajirem, A.A., “CO2 capture and separation technologies for end-of-pipe applications—A review,” Energy, Vol.35, pp.2610-2628, 2010.
45. O'Neil, P.V., “Advanced engineering mathematics,” Thomson, Toronto, 2007.
46. Peng, X., Zhou, J., Wang, W., Cao, D., “Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing,” Carbon, Vol.48, pp.3760-3768, 2010.
47. Plasynski, S.I., Litynski, J.T., McIlvried, H.G., Srivastava, R.D., “Progress and new developments in carbon capture and storage,” Critical Reviews in Plant Science, Vol.28, pp.123-138, 2009.
48. Poling, B.E., Prausnitz, J.M., OC John, P., “The Properties of Gases and Liquids,” McGRAW-HILL, New York, 2001.
49. Sander, R., “Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (version 3),” 1999, http://www.mpch-mainz.mpg.de/~sander/res/henry. html.
50. Seinfeld, J.H., Pandis, S.N., “Atmospheric Chemistry and Physics,” Wiley, New York, 1998.
51. Singh, P., Brilman, D.W.F., Groeneveld, M.J., “Evaluation of CO2 solubility in potential aqueous amine-based solvents at low CO2 partial pressure,” International Journal of Greenhouse Gas Control, Vol.5, pp.61-68, 2011.
52. Stolaroff, J.K., Keith, D.W., Lowry, G.V., “Carbon dioxide capture from atmospheric air using sodium hydroxide spray,” Environmental Science & Technology, Vol.42, pp.2728-2735, 2008.
53. Strauss, W.A., “Partial Differential Equations :an Introduction,” Wiley, New York, 2008.
54. Vargaftik, N.B., Vinogradov, Y.K., Yargin, V.S., “Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures,” Begell House, New York, 1996.
55. Wigley, T.M.L., “The pre-industrial carbon dioxide level,” Climatic Change, Vol.5, pp.315-320, 1983.
56. Wilkinson, M.B., Simmonds, M., Allam, R.,J., White, V., “Oxyfuel Conversion of Heaters and Boilers for CO2 Capture,” Second National Conference on Carbon Sequestration, 2003.
57. Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V., “Acoustic manipulation of small droplets,” Anal. Bioanal. Chem., Vol.379, pp.982-991, 2004.
58. Wu, J., Du, G., “Streaming generated by a bubble in an ultrasound field,” Journal of the Acoustical Society of America, Vol.101, pp.1899-1907, 1997.
59. Yeh, A.C., Bai, H., “Comparision of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions,” The science of the Total Environment, Vol.228, pp.121-133, 1999.
60. Zhang, J., Chen, J., Misch, R., Agar, D.W., “Carbon dioxide absorption in biphasic amine solvents with enhanced low temperature solvent regeneration,” Chemical Engineering Transactions, Vol.21, pp.169-174, 2010a.
61. Zhang, W.F., Wang, Q.H., Fang, M.X., Luo, Z.Y., Cen, K.F., “Experimental study on the absorption of CO2 from flue gas by aqueous solutions of methyldiethanolamine + potassium glycinate in hollow fiber membrane contactor,” IEEE, Vol.10, pp.1-4, 2010b.
62. 陳維新,“空氣污染與控制,” 高立圖書有限公司,2009年10月。
63. 陳維新,“生質物與生質能,” 高立圖書有限公司,2010年7月。
64. 陳維新,“能源概論,” 高立圖書有限公司,2011年1月。
65. 環保署 http://www.epa.gov.tw/