| 研究生: |
許惟則 Hsu, Wei-Tse |
|---|---|
| 論文名稱: |
應用投影梯度法解決克羅內克近似問題 Applying Projected Gradient Methods for Solving Kronecker Approximations |
| 指導教授: |
林敏雄
Lin, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 克羅內克近似 、梯度流 、最佳化方法 |
| 外文關鍵詞: | Kronecker approximation, gradient flow, optimization method |
| 相關次數: | 點閱:123 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
克羅內克近似廣泛應用於信號處理、機器學習、量子計算和數據壓縮。在本文中,我們探討了無約束和有約束的克羅內克近似問題,並特別關注於有約束情況下的正交結構。我們應用梯度下降法和投影梯度法來構建優化的梯度流。在理論上,我們證明了構建的梯度流收斂到局部最優解。在數值上,我們提供了實驗結果來說明我們方法的有效性和效率。
Kronecker approximations are widely used in signal processing, machine learning, quantum computing, and data compression. In this article, we explore both unconstrained and constrained Kronecker approximation problems, focusing on orthogonal structures for the constrained case. We apply gradient descent and projected gradient methods to build the gradient flow for optimization. Theoretically, we demonstrate that the constructed flow converges to a local optimum. Numerically, we provide experimental results to illustrate the effectiveness and efficiency of our method.
[1] Nasir Ahmed, Paul J Milne, and Stanley G Harris. Electrocardiographic data compression via orthogonal transforms. IEEE Transactions on Biomedical Engineering, (6):484–487, 1975.
[2] Nasir Ahmed and Kamisetty Ramamohan Rao. Orthogonal transforms for digital signal processing. Springer Science & Business Media, 2012.
[3] Moody T Chu. Linear algebra algorithms as dynamical systems. Acta numerica, 17:1–86, 2008.
[4] Moody T Chu and Kenneth R Driessel. The projected gradient method for least squares matrix approximations with spectral constraints. SIAM Journal on Numerical Analysis, 27(4):1050–1060, 1990.
[5] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.
[6] Yu Guan, Nan Jiang, Bo Dong, and Moody T Chu. Convergence analysis of alternating direction methods: A general framework and its applications to tensor approximations.
[7] Toshio Koga and Junichi Ohki. Data compression using orthogonal transform and vector quantization, July 25 1989. US Patent 4,851,906.
[8] Charles F.Van Loan. The ubiquitous kronecker product. Journal of Computational and Applied Mathematics, 123(1):85–100, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.
[9] Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of Mathematical Sciences, 7:87–154, 2017.
10] Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. Springer, 1993.
[11] Liqi Wang and Moody T Chu. On the global convergence of the alternating least squares method for rank-one approximation to generic tensors. SIAM Journal on Matrix Analysis and Applications, 35(3):1058–1072, 2014.
[12] Ruye Wang. Introduction to orthogonal transforms: with applications in data processing and analysis. Cambridge University Press, 2012.