簡易檢索 / 詳目顯示

研究生: 施文皓
Shih, Wen-Hao
論文名稱: 橡膠基摩擦材料製程及磨潤性質研究
The Study of Fabrication and Tribological Properties of Rubber Based Friction Material
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chen, Jiin-Huey
共同指導教授: 李國榮
Lee, Kuo-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 137
中文關鍵詞: 摩擦材料橡膠磨耗
外文關鍵詞: Friction Materials, Rubber, Wear
相關次數: 點閱:119下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用丁腈橡膠(Nitrile-Butadiene Rubber, NBR)做為橡膠基摩擦材料的主要基材,探討不同的製程參數(穩定化升溫速率、成型壓力、穩定化溫度、熱壓溫度)對於橡膠基摩擦材料在磨潤性質的影響。研究中使用橡膠硬度計、磨耗試驗機、表面粗糙度儀、掃描式電子顯微鏡來分析丁腈橡膠基摩擦材料的機械、磨潤性質與顯微結構。
    由實驗的結果可了解,在穩定化升溫速率部分隨著升溫速率越快,摩擦係數也越大,表面粗糙度上升,硬度下降,Rd的試片展現出最好的各項性質。成型壓力的部分,由試驗結果可知當成型壓力為Pb、持壓時間ta時即可成型,且壓製後的試片體積膨脹率在理想的範圍內。穩定化溫度實驗確立了在溫度為Tb時擁有最理想的摩擦係數、磨耗量、表面粗糙度與硬度值。熱壓溫度部分,當熱壓溫度為常溫且持壓時間為ta時展現出最高的摩擦係數、表面粗糙度與良好的磨耗率和較低的硬度值。
    綜合上述實驗結果可發現,製程參數為:穩定化升溫速率Rd、成型壓力為Pb在溫度Tc持壓ta且穩定化溫度為Tb的試片,不論在轉速為64 rpm、326 rpm皆有最高的摩擦係數與良好的磨耗率,具有商業競速用自行車煞車片材料的潛力。

    The purpose of this research is to investigate the effects of diverse fabrication parameters (heating rate of post-cured、molding pressure、temperature of post-cured and molding temperature) on tribological properties of Nitrile Butadiene Rubber (NBR)-based friction material. The mechanical properties, tribological properties, and microstructure of NBR based friction material are measured by Shore-type hardness tester, sliding wear tester, surface roughness tester and scanning electron microscopy.
    The results indicate that in heating rate of post-cured when the rate faster, the friction coefficient(COF) and surface roughness value are increased, and the hardness is decreased, the Rd specimen presents the best qualities. While the molding pressure of specimen is Pb with molding time for one minute, the specimens can be formed and their volume expansion rate are in the idea range. The experiment of temperature of post-cured show that the temperature of post-cured at Tb has the best qualities. The molding temperature is at Tc and with molding time for ta with Pb molding pressure can display the highest coefficient of friction and low wear loss.
    The experiment shows that when fabrication parameters of specimen have heating rate of post-cured at Rd and temperature of post-cured at Tb , molding temperature is at Tc and molding time for ta with Pb molding pressure can display the best qualities in both rotation speed in 64 rpm and 326 rpm breaking test. These specimens have potential of being break pad material in bicycles for business.

    摘 要 I Abstract II 誌 謝 IV 總目錄 VI 表目錄 XI 圖目錄 XIII 第一章 前言 1 第二章 文獻回顧 3 2.1 摩擦材料 3 2.1.1 摩擦材料定義 4 2.1.2 摩擦材料的應用 4 2.1.2.1 碳/碳複合材料 5 2.1.2.2 金屬基摩擦材料 5 2.1.2.3 半金屬基摩擦材料 6 2.1.2.4 非石棉有機基摩擦材料(簡稱NAO) 7 2.1.2.5 橡膠基摩擦材料 8 2.1.3 煞車系統規範 8 2.1.3.1 飛機煞車 9 2.1.3.2 汽機車煞車 10 2.1.3.3 自行車煞車 12 2.1.4 磨潤學簡介 17 2.1.4.1 摩擦原理 18 2.1.4.2 影響摩擦性能的因素 19 2.1.4.3 磨耗機制 22 2.2 橡膠簡介 23 2.2.1 橡膠材料的發展 24 2.2.2 橡膠材料的種類 26 2.2.3 橡膠製程介紹 27 2.2.3.1 膠料選擇 27 2.2.3.2 素煉 28 2.2.3.3 混煉 28 2.2.3.4 壓延成型 28 2.2.3.5 硫化 29 2.2.4 橡膠添加劑 29 2.3 橡膠基摩擦材料 31 2.3.1 基材 31 2.3.1.1 丁腈橡膠(NBR)簡介 31 2.3.1.2 丁腈橡膠(NBR)特性 32 2.3.2 摩擦調整劑 36 第三章 實驗方法 56 3.1 實驗材料 56 3.1.1 丁腈橡膠(NBR) 56 3.2 實驗製程 56 3.2.1 原料製備 56 3.2.2 試片成型 56 3.2.2.1 加壓成型 57 3.2.2.2 熱壓成型 57 3.2.3 穩定化處理 57 3.2.4 試片加工 58 3.3 性質測試及分析 58 3.3.1 厚度重量變化量測 58 3.3.2 磨耗測試 59 3.3.2.1 磨耗測試條件 60 3.3.3 橡膠硬度測試 60 3.3.4 表面粗糙度量測 60 3.3.5 掃描式電子顯微鏡觀察 61 3.3.6 光學相機觀察 61 第四章 結果與討論 75 4.1 試片尺寸安定性 76 4.1.1 試片厚度變化 76 4.2 機械性質測試 78 4.2.1 硬度測試 78 4.3 磨潤性質分析 78 4.3.1 試片經過磨耗試驗後之摩擦曲線分布 78 4.3.1.1 試片經64 rpm轉速測試 79 4.3.1.2 試片經326 rpm轉速測試 80 4.3.2 穩定化升溫速率對摩擦係數的影響 80 4.3.3 穩定化溫度對摩擦係數的影響 81 4.3.4 熱壓溫度對摩擦係數的影響 81 4.3.5 試片之磨耗損失 82 4.3.6 試片之表面粗糙度 83 4.4 試片表面形貌與顯微結構觀察 84 4.4.1 試片之表面形貌 84 4.4.2 試片之顯微結構 85 第五章 結論 126 第六章 參考文獻 128

    A. Saffar, A. Shojaei, Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials, Wear 269 (2010) 145–151
    A. Saffar, A. Shojaei, Effect of rubber component on the performance of brake friction materials, Wear 274– 275 (2012) 286-297
    A. Mostafa, A. Abouel-Kasem, M.R. Bayoumi, M.G. El-Sebaie, Effect of carbon black loading on the swelling and compression set behavior of
    SBR and NBR rubber compounds, Materials and Design 30 (2009) 1561–1568
    Adem Kurt, Mustafa Boz, Wear behavior of organic asbestos based and bronze based powder metal brake linings, Material & Design 26(2005)717-721
    A.J.Smith, H.V.Atkinson, S.V.Hainsworth and A.C.F.Cocks, Use of a micromanipulator at high temperature in an environmental scanning electron microscope to apply force during the sintering of copper particles, Scripta Materialia 55(2006) 707-710
    Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14-p16, 1991
    Bijwe J., Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - a review, Polymer Composites 18:378-396, 1997
    Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
    Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
    Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
    Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
    Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007
    Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985
    Eovolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
    F.E.Kennedy, A.C.Balbahadur, D.S.Lashmore, The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications, Wear 203-204(1997)715-721
    Feng-hua Su, Zhao-Zhu Zhang, Wei-min Liu, Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates, Wear 260(2006)861-868
    Gewen Yi, Fengyuan Yan, Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262(2007)121-129
    Han S., Kim W.G., Yoon H.G., Moon T.J., Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, Journal of Polymer Science A: Polymer Chemistry 36:773-783, 1998
    Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999
    Hirotaka Kato, Masahiro Takama, Yoshiro Iwai, Kazuo Washida, Yoshinori Sasaki, Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide, Wear 255(2003)573-578
    Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
    H. Jang , K. Ko, S.J. Kim, R.H. Basch , J.W. Fash , The effect of metal fibers on the friction performance of automotive brake friction materials,Wear 256 (2004) 406–414
    H.Jang , J.S.Lee, J.W.Fash, Compositional effects of the brake friction material on creep groan phenomena, Wear 251(2001)1477-1483
    I.Mutlu, C.Oner, F.Findik, Boric acid effect in phenolic composites on tribological properties in brake linings, Materials & Design 28(2007) 480-487
    I.Mutlu, O.Eldogan, F.Findik, Tribological properties of some phenolic composites suggested for automotive brakes, Tribology International 39(2006)317-325
    J. Karger-Kocsisa, Mechanical and tribological properties of rubber blends composed of HNBR and in situ produced polyurethane, Wear 268 (2010) 464–472
    Jacko M.G., Rhee S.K., Brake linings and clutch facings. In Grayson M., editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983
    Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
    J.B.Singh, W.Cai, P.Bellon, Dry sliding of Cu-15%Ni-8wt%Sn bronze: Wear behavior and microstructures, Wear 263(2007)830-841
    J.Y.Wu, Y.C.Zhou, J.Y.Wang., Tribological behavior of Ti2SnC particulate reinforced copper copper matrix composites, Materials Science Engineering A: 422(2006)266-271
    Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
    Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
    Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
    Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
    Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
    K.M.Shorowordi, A.S.M.A.Haseeb, J.P.Celis, Velocity effects on
    the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,Wear256(2004)1176-1181
    K.W. Hee, P. Filip, Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings, Wear 259 (2005) 1088–1096
    Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
    Li Chang, Zhong Zhang, Lin Ye, Klaus Friedrich, Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40(2007)1170-1178
    Louis B.Newman F, Friction Materials Recent Advances
    Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004
    Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
    Mumin Sahin, Cem S.Cetinarslan, H.Erol Akata, Effect of surface roughness on friction coefficients during upsetting processes for different materials, Materials and Design 28(2007) 633-640
    Min Hyung Cho, Jeong Ju, Seong Jin Kim, Ho Jang, Tribological properties of solid lubricants(graphite,Sb2S3,MoS2) for automotive brake friction materials, Wear 260(2006)855-860
    Min Hyung Cho, Seong Jin Kim, Daehwan Kim, Ho Jang, Effects of ingredients on tribological characteristics of a brake lining: an experimental case study,Wear 258 (2005) 1682-1687
    M.H.Cho, S.J.Kim, R.H.Basch, J.W.Fash, H.Jang, Tribological study of gray cast iron with automotive brake linings:The effect of rotor microstructure, Tribology International 36(2003)537-545
    Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007
    Peter Filip, Zdenek Weiss, David Rafaja, On friction layer formation in polymer matrix composites materials for brake applications, Wear 252(2002)189-198
    P.K.Deshpande, R.Y.Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Materials Science and Engineering A 418(2006)137-145
    R.J.Talib, A.Muchtar, C.H.Azhari., Microstructural characteristics on the surface and subsurface of semimetallic automotive friction materials during braking process, Journal of Materials Processing Technology 140:694-699,2003
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
    Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
    Seong Jin Kim, Ho Jang, Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33 (2000) 477–484
    Shaoyang Zhang, Fuping Wang, Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with differnt SiC particles, Journal of Materials Processing Technology 182(2007)122-127
    Shinn-Shyong Tzeng, Fa-Yen Chang, Electrical resistivity of electroless nickel coated carbon fibers, Thin Solid Films 388 (2001) 143-149
    Shinn-Shyong Tzeng, Fa-Yen Chang, EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites, Materials science and Engineering A302(2001)258-267
    S.J. Kim, M.H. Cho, D.-S. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484–1491
    V.A.Bely, A.I.Sviridenok, M.I.Petrokovets, V.G.Savkin, Friction and wear in polymer-based materials
    Vlastimil Matejka, Yafei Lu, Tanli Fan, Gabriela Kratosova, Jana Leskova, Effect of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation, Wear 265(2008)1121-1128
    Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
    Xiang Xiong, Jie Chen, Pingping Yao, Shipeng Li, Baiyun Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear 262 (2007) 1182–1186
    Xu Jincheng, Yu Hui, Xia long, Li Xiaolong, Yang Hua, Effect of some factors on the tribological properties of the short carbon fiber-reinforced copper composite, Materials and Design 25(2004) 489-493
    Yiqun Liu, Zhongqing Fan, Hengyi Ma, Yigang Tan, Jinliang Qiao, Application of nano powdered rubber in friction materials, Wear 261 (2006) 225–229
    Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
    Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
    Yiping Tang, Hezhou Liu, Haijun Zhao, Lei Liu, Yating Wu, Friction and wear properties matrix composites reforced with short carbon fibers, Materials & Design 29(2008)257-261
    Y.S. Zhang, Z. Han, K. Wang, K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear 260 (2006) 942–948
    Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987
    高維山譯,煞車系統設計及安全性,科技圖書,台北市,中華民國93年
    馬振基,高分子複合材料,國立編譯館,台北市,中華民國95年
    李育德,高分子導論,黎明書店,新竹,中華民國76年
    何淑靜,銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,中華民國93年
    岑尚仁,石墨、鋁及製程參數對燒結銅基摩擦材料磨潤性質影響之研究,國立成功大學材料科學及工程學系,台南市,中華民國92年
    簡兆廷,碳化時間及銅纖維含量對銅/酚醛樹脂半金屬基摩擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,中華民國98年
    朱傳裕,石墨化順序對碳/碳複合材料機械及磨潤性質之影響,國立成功大學材料科學及工程學系,台南市,中華民國98年
    郭一帆,銅粉粒徑大小與分佈對半碳化銅/酚醛樹脂基半金屬摩擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,中華民國99年
    曾鴻儒,穩定化溫度及成型壓力對橡膠基摩擦材料機械及磨潤性質的影響,國立成功大學材料科學及工程學系,台南市,中華民國100年
    許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,中華民國93年 140
    行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,中華民國85年
    陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,中華民國75年
    陳世春,劉守一,塑膠材料潤滑性質,復漢出版社,台南市,中華民
    國77年9月
    林建中,高分子加工與工程,文京圖書有限公司,台北市,中華民國
    77年9月10日
    葉明國博士,橡膠化學與技術,茂文圖書有限公司,台北市,中華民
    國72年3月
    杜逸虹,聚合體學(高分子化學),科學技術叢書,三民書局印行,中
    華民國76年8月
    台灣區橡膠工業同業公會,橡膠工業技術手冊,中華民國99年4月
    小松公榮,橡膠超理解法,台灣區橡膠工業同業公會,中華民國92年
    經濟部工業局,自行車技術手冊,中華民國90年

    下載圖示 校內:2017-08-28公開
    校外:2017-08-28公開
    QR CODE