| 研究生: |
張李毓 Chang, Li-Yu |
|---|---|
| 論文名稱: |
探討流道尺度對聚二甲基矽氧烷表面聲波微流體晶片壓力節線的變化 Effect of channel dimension on pressure-nodal lines in PDMS based acoustofluidics |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 表面聲波駐波 、微流體晶片 、聚二甲基矽氧烷 、聯結層 、側壁效應 、壓力節點 、粒子聚焦 |
| 外文關鍵詞: | standing surface acoustic wave(SSAW), microchip, polydimethyl siloxane(PDMS), coupling layer, sidewall effect, pressure node |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面聲波微流體晶片是以聲輻射力作為主要驅動力來操控粒子或細胞的生
物晶片,與傳統聚焦法不同的地方在,粒子不須經過前處理,而可以根據其本
身體積、密度、壓縮比等性質進行聚集排列。此外,其樣品消耗少、可控性高
等優點,已然成為生醫工程領域的熱門研究方向。然而,在使用聚二甲基矽氧
烷(PDMS)與表面聲波駐波(SSAW)組成的微流體晶片中,過往研究對於流道中
壓力節點與壓力反節點的聚焦位置敘述甚少,儘管部分文獻中提出以 1D、2D
模擬預測聚焦結果,仍然存在不少與實驗結果相異之處。
對此,本研究首先以可重複使用之微流體晶片,探討不同聯結層厚度與底
板材質對螢光粒子聚焦速度的影響。接著,使用直接接合式微流體晶片並以改
變流道設計及側壁性質的方式,探討側壁效應對壓力節點分布的影響並嘗試穩
定消除側壁效應。最後,利用不同流道寬度置中對準壓力節點與反節點,對應
兩波長大小不同的雙邊指叉狀電極,探討壓力節點於流道中分布情形,並以
1D-HSW 分析預測節點數量及其成因。
研究結果顯示,可重複使用微流體晶片十二烷連結層厚度對粒子聚焦速度
的自然對數值呈線性衰減,且使用底板材質 PET 相較於玻璃透射聲波能力高出
約為 3.3 倍,但聚焦速度仍不及直接接合式晶片。對於側壁效應的研究,僅透
過區域性的側壁改質以及簡單的流道收縮突擴設計,並無法穩定消除側壁效
應。最後,分析不同流道寬度於 90μm-IDTs、180μm-IDTs 形成壓力節點位置,
以 1D-HSW 理論能夠大致預測其節點數量及分布,且平移流道 1/4 波長距離能
明顯改變流體壓力勢場的分佈。而節點預測失敗之結果,推測為流場內聲波駐
波以一定折角進入流場,同時波長發生改變導致其分布及數量並不如預期。
In SSAW-based microfluidic chips, particles will be trapped at either the pressure
nodes or antinodes depending on the properties of the particles, the fluid, and the
channel wall. For the PDMS-SSAW based microfluidic device, the number of
pressure nodal-lines varied with the microchannel width or acoustic wavelength has
been discussed. In this study, first, utilization of the reusable microchips was
proposed. Then, eliminating sidewall effect by using convergent-divergent channel
design or integrating the metallic block in the channel wall were investigated. Last,
the number of pressure nodal-lines in different microchannels was discussed and the
results were interpreted by 1D-HSW model.
1. Hughes, W.S., The potential difference between glass and electrolytes in contact with the glass. Journal of the American Chemical Society, 1922. 44(12): p. 2860-2867.
2. Maxam, A.M. and W. Gilbert, A new method for sequencing DNA. Proceedings of the National Academy of Sciences, 1977. 74(2): p. 560-564.
3. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences, 1977. 74(12): p. 5463-5467.
4. Huh, D., et al., Microfluidics for flow cytometric analysis of cells and particles. Physiological measurement, 2005. 26(3): p. R73.
5. Pattanayak, P., et al., Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluidics, 2021. 25(12): p. 99.
6. Toner, M. and D. Irimia, Blood-on-a-Chip. Annual Review of Biomedical Engineering, 2005. 7(1): p. 77-103.
7. Yi, C., et al., Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta, 2006. 560(1-2): p. 1-23.
8. Sims, C.E. and N.L. Allbritton, Analysis of single mammalian cells on-chip. Lab on a Chip, 2007. 7(4): p. 423-440.
9. Tanaka, Y., et al., Biological cells on microchips: new technologies and applications. Biosens Bioelectron, 2007. 23(4): p. 449-58.
10. Chau, L.-K., et al., Microfabricated Silicon Flow-Cell for Optical Monitoring of Biological Fluids. Analytical Sciences, 1999. 15(8): p. 721-724.
11. Fu, A.Y., et al., A microfabricated fluorescence-activated cell sorter. Nature Biotechnology, 1999. 17(11): p. 1109-1111.
12. Lee, G.-B., C.-H. Lin, and G.-L. Chang, Micro flow cytometers with buried SU-8/SOG optical waveguides. Sensors and Actuators A: Physical, 2003. 103(1): p. 165-170.
13. Lee, G.-B., et al., The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering, 2006. 16(5): p. 1024.
14. Cheng, I.-F., et al., An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics, 2007. 1(2).
15. Rodriguez-Trujillo, R., et al., Low cost micro-Coulter counter with hydrodynamic focusing. Microfluidics and Nanofluidics, 2007. 3(2): p. 171-176.
16. Tsai, C.-H., H.-H. Hou, and L.-M. Fu, An optimal three-dimensional focusing technique for micro-flow cytometers. Microfluidics and Nanofluidics, 2008. 5(6): p. 827-836.
17. Kummrow, A., et al., Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining. Lab on a Chip, 2009. 9(7): p. 972-981.
18. Fu, L.-M., et al., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta, 2004. 507(1): p. 163-169.
19. Yang, R.-J., et al., A new focusing model and switching approach for electrokinetic flow inside microchannels. Journal of Micromechanics and Microengineering, 2005. 15(11): p. 2141.
20. Xuan, X. and D. Li, Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross‐microchannels. Electrophoresis, 2005. 26(18): p. 3552-3560.
21. Kohlheyer, D., et al., A microfluidic device for array patterning by perpendicular electrokinetic focusing. Microfluidics and nanofluidics, 2008. 4: p. 557-564.
22. Xuan, X., J. Zhu, and C. Church, Particle focusing in microfluidic devices. Microfluidics and Nanofluidics, 2010. 9(1): p. 1-16.
23. Howell Jr, P.B., et al., Two simple and rugged designs for creating microfluidic sheath flow. Lab on a Chip, 2008. 8(7): p. 1097-1103.
24. Mao, X., J.R. Waldeisen, and T.J. Huang, “Microfluidic drifting”—implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab on a Chip, 2007. 7(10): p. 1260-1262.
25. Mao, X., et al., Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab on a Chip, 2009. 9(11): p. 1583-1589.
26. Lee, M.G., S. Choi, and J.-K. Park, Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab on a Chip, 2009. 9(21): p. 3155-3160.
27. Scott, R., P. Sethu, and C. Harnett, Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter. Review of Scientific Instruments, 2008. 79(4): p. 046104.
28. Watkins, N., et al., A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab on a Chip, 2009. 9(22): p. 3177-3184.
29. Yamada, M. and M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip, 2005. 5(11): p. 1233-1239.
30. Yamada, M. and M. Seki, Microfluidic particle sorter employing flow splitting and recombining. Analytical chemistry, 2006. 78(4): p. 1357-1362.
31. Aoki, R., et al., In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluidics and nanofluidics, 2009. 6: p. 571-576.
32. Di Carlo, D., et al., Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 2007. 104(48): p. 18892-18897.
33. Ateya, D.A., et al., The good, the bad, and the tiny: a review of microflow cytometry. Analytical and bioanalytical chemistry, 2008. 391: p. 1485-1498.
34. Godin, J., et al., Microfluidics and photonics for Bio‐System‐on‐a‐Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. Journal of biophotonics, 2008. 1(5): p. 355-376.
35. Chu, H., I. Doh, and Y.-H. Cho, A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab on a Chip, 2009. 9(5): p. 686-691.
36. Petersson, F., et al., Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Analytical chemistry, 2005. 77(5): p. 1216-1221.
37. Petersson, F., et al., Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Analytical chemistry, 2007. 79(14): p. 5117-5123.
38. Goddard, G., et al., Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 2006. 69(2): p. 66-74.
39. Goddard, G.R., et al., Analytical performance of an ultrasonic particle focusing flow cytometer. Analytical chemistry, 2007. 79(22): p. 8740-8746.
40. Shi, J., et al., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 2008. 8(2): p. 221-223.
41. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proceedings of the London mathematical Society, 1885. 1(1): p. 4-11.
42. Mandal, D. and S. Banerjee, Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors (Basel), 2022. 22(3).
43. Olivadoti, G., Sensing, analyzing, and acting in the first moments of an earthquake. Analog Dialogue, 2001. 35(1): p. 1-3.
44. White, R.M. and F.W. Voltmer, Direct piezoelectric coupling to surface elastic waves. Applied physics letters, 1965. 7(12): p. 314-316.
45. Curie, J. and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de minéralogie, 1880. 3(4): p. 90-93.
46. Devkota, J., P.R. Ohodnicki, and D.W. Greve, SAW Sensors for Chemical Vapors and Gases. Sensors (Basel), 2017. 17(4).
47. Matthias, B. and J. Remeika, Ferroelectricity in the ilmenite structure. Physical Review, 1949. 76(12): p. 1886.
48. Wong, K.-K., Properties of lithium niobate. 2002: IET.
49. Saiki, T., K. Okada, and Y. Utsumi, Highly efficient liquid flow actuator operated by surface acoustic waves. Electronics and Communications in Japan, 2011. 94(10): p. 10-16.
50. Mazalan, M.B., et al., Current development in interdigital transducer (IDT) surface acoustic wave devices for live cell in vitro studies: A review. Micromachines, 2021. 13(1): p. 30.
51. Gao, Y., et al., Acoustic microfluidic separation techniques and bioapplications: A review. Micromachines, 2020. 11(10): p. 921.
52. Yosioka, K. and Y. Kawasima, Acoustic radiation pressure on a compressible sphere. Acta Acustica united with Acustica, 1955. 5(3): p. 167-173.
53. Shi, J., et al., Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2011. 11(14): p. 2319-2324.
54. Leibacher, I., S. Schatzer, and J. Dual, Impedance matched channel walls in acoustofluidic systems. Lab Chip, 2014. 14(3): p. 463-70.
55. Khasanshin, T., A. Shchamialiou, and O. Poddubskij, Thermodynamic properties of heavy n-alkanes in the liquid state: n-dodecane. International Journal of Thermophysics, 2003. 24: p. 1277-1289.
56. Mao, Z., et al., Experimental and numerical studies on standing surface acoustic wave microfluidics. Lab Chip, 2016. 16(3): p. 515-24.
57. Baek, J., et al., Effect of the sound speed mismatch between fluid and channel on the particle alignment in a standing surface acoustic wave device. Sensors and Actuators B: Chemical, 2021. 346.
58. Jo, M.C. and R. Guldiken, Particle manipulation by phase-shifting of surface acoustic waves. Sensors and Actuators A: Physical, 2014. 207: p. 39-42.
59. Dong, J., et al., Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation. Ultrasonics, 2021. 117: p. 106547.
60. Zhang, P., et al., Acoustic Microfluidics. Annu Rev Anal Chem (Palo Alto Calif), 2020. 13(1): p. 17-43.
61. Li, Y., et al., Recent advances in acoustic microfluidics and its exemplary applications. Biomicrofluidics, 2022. 16(3): p. 031502.
62. Palmeri, M.L., et al., Characterizing acoustic attenuation of homogeneous media using focused impulsive acoustic radiation force. Ultrasonic imaging, 2006. 28(2): p. 114-128.
63. Schmid, L., et al., Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluidics and nanofluidics, 2012. 12: p. 229-235.
64. Gao, Y., Inertial migration of particles in microchannel flows. 2017, Toulouse, INSA.
65. Taatizadeh, E., et al., Micron-sized particle separation with standing surface acoustic wave—Experimental and numerical approaches. Ultrasonics Sonochemistry, 2021. 76: p. 105651.