| 研究生: |
曾柏盛 Tseng, Po-Sheng |
|---|---|
| 論文名稱: |
材料積層製造知識庫系統之開發 Development of a Knowledge-based System for Materials Additive Manufacturing |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 積層製造 、粉床熔融 |
| 外文關鍵詞: | Additive manufacturing, Powder bed fusion |
| 相關次數: | 點閱:107 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積層製造技術發展迅速、日新月異,為了達到更有效率的學習,一個架構清晰、操作簡便的知識庫系統有其開發的必要性,本研究以知識管理(Knowledge Management)的角度為出發點,針對材料積層製造技術製程分類、使用材料、產品應用三大層面蒐集彙整相關文獻資料,然後根據整理歸納後的重點資料,建構出材料積層製造技術之知識庫,並以網頁型式將此知識庫加以呈現。
根據美國材料試驗協會F42委員會的標準規範,積層製造技術加以歸納可以分為七類,包含: 1.光學聚合固化(Vat Photo-polymerization) 2.材料噴塗(Material Jetting) 3.材料擠型(Material Extrusion) 4.黏結劑噴塗(Binder Jetting) 5.薄片疊層(Sheet Lamination) 6.粉床熔融(Powder Bed Fusion) 7.直接能量沉積(Direct Energy Deposition);而上述技術當中,製造金屬材料的主要技術為粉床熔融與直接能量沉積兩種技術,而本研究針對 「金屬積層製造技術」此範疇,做出一個較為深入的探究分析;除此之外,也針對其他五個技術其製造過程、儀器設備、使用材料…等,亦有相當程度的說明介紹。
本研究所建立的知識庫網頁具有知識管理的實用價值,它不僅能幫助初學者瞭解積層製造的材料、製程、應用,除了提供初學者一個基礎知識的介紹平台,亦同時提供進階人員一個便捷的查詢空間;相較於其他的學習管道,本知識庫網站便於操作瀏覽、易於更新擴充,乃為因應e世代潮流的知識取得管道。
There are new knowledges generated in the field of additive manufacturing (AM) technologies. To extract knowledge effectively, we need a knowledge-based system with a clear structure. There are three aspects of AM technologies, including classification of processings, materials and application of products. A knowledge-based system has been established from the standpoint of knowledge management and demonstrated in the form of websites.
The knowledge-based system is separated to three divisions, which are classification of processings, materials and application of products. In the first division, processings are classified into seven categories based on phases of starting materials. Phases of starting materials involve liquid phase, semi-liquid phase and solid phase. AM technologies based on liquid phase include vat photo-polymerization, material jetting and binder jetting . AM technology based on semi-liquid phase is termed as fused deposition modeling . AM technologies based on solid powders include powder bed fusion and direct energy deposition. AM technologies based on solid sheets is known as sheet lamination .
In the second division, the materials are divide into three categories, which are polymers, metals and ceramics. In the third division, applications of products are illustrated by case studies. Three divisions are presented in the form of a clear-structured website .
The knowledge-based system for additive manufacturing is valuable for knowledge management. Comparing with other methods of knowledge acquisition, the knowledge-based system is easier to be updated , therefore it is an excellent medium for popularisation the information related to AM technologies.
[1]ASTM International Committee F42 on Additive Manufacturing
Technologies,“Standard Terminology for Additive Manufacturing Technologies”, West Conshohocken, 2009.
[2] I. Gibson , D. W. Rosen and B. Stucker, “Additive Manufacturing Technologies : Rapid Prototyping to Direct Digital Manufacturing”, Springer Science Business Media, 2010.
[3] 林偉凱、劉文海、梁孝祖, “積層製造用金屬粉末製程技術及設備發展與前瞻應用”, 財團法人金屬工業研究發展中心技術報告, 2014.
[4] http://www.gartner.com/newsroom/id/2819918
[5] http://www.economist.com/node/21552901/print
[6] 黃薏文,“超級鋼冶煉製程及其應用知識庫系統”, 國立成功大學材料科學及工程學系碩士論文, 2010.
[7] 邱慶龍,“積層製造的產業發展現況與未來”, 財團法人工業技術研究院機械工業雜誌371期, 2014.
[8] Wohlers Associates, “Press of Wohlers Report2013-Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report”, 2013.
[9]http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/
[10]http://www.custompartnet.com/wu/3d-printing
[11]http://www.3dpe.ir/about-3d-printer-news5/kind.html
[12] http://www.mtm.kuleuven.be/Onderzoek/Ceramics/SLS
[13] A. Simchi,“Direct Laser Sintering of Metal Powders: Mechanism,Kinetics and Microstructural Features”, Materials Science and Engineering A , Vol. 428 , 2006, pp.148–158.
[14]http://www.arcam.com/technology/electron-beam-melting/
[15]P. Heinl, L. Muller, C. Korner, R. F. Singer and F. A. Muller, “Cellular Ti–6Al–4V Structures with Interconnected Macro Porosity for Bone Implants Fabricated by Selective Electron Beam Melting”,Acta Biomaterialia ,Vol.4, 2008, pp. 1536–1544.
[16] M. Jamshidinia, R. Kovacevic and F. Kong, “Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti-6Al-4V”, Journal of Manufacturing Science and Engineering, Vol. 135, 2013, pp.131-145.
[17] https://en.wikipedia.org/wiki/Selective_heat_sintering
[18] http://3dwiki.ru/shs-pechat-ili-vyborochnoe-teplovoe-spekanie/
[19]Y. P. Kathuria,“Microstructuring by Selective Laser Sintering of Metallic Powder”, Surface and Coatings Technology, Vol.116, 1999, pp. 643–647.
[20]S. Das, M. Wohlert, J. J. Beaman and D. L. Bourell,“Processing of Titanium Net Shapes by SLS/HIP”, Materials and Design, Vol.20, 1999, pp.115-121.
[21]K. A. Mumtaz, P. Erasenthiran and N. Hopkinson, “High Density Selective Laser Melting of Waspaloy”, Journal of Materials Processing Technology, Vol.195, 2008, pp. 77–87.
[22] M. Kerschbaumer, G. Ernst and P. Leary, “Toolpath Generation for Five Axis Laser Cladding: Proceedings of the Fourth Laser Assisted Net Shape Engineering”, Vol. 2, 2004, pp. 831–842.
[23]http://www.esciencecentral.org/ebooks/advanced-laser-materials/generation-of-3d-parts-with-lasers.php
[24] http://www.bjnsf.org/nsf_qysd/201311/t20131101_9539.html
[25] J. D. Williams and C. R. Deckard, “Advances in Modeling the Effects of Selected Parameters on the SLS Process”, Rapid Prototyping Journal, Vol.4, 1998, pp. 90–100.
[26] L. Sextona, S. Lavina, G. Byrnea and A. Kennedyb, “Laser Cladding of Aerospace Materials”, Journal of Materials Processing Technology, Vol.122, 2002, pp. 63–68.
[27] https://en.wikipedia.org/wiki/Laminated_object_manufacturing
[28] http://fabrisonic.com/ultrasonic-additive-manufacturing-overview/
[29] https://en.wikipedia.org/wiki/Ultrasonic_consolidation
[30] J. Park, M. J. Tari and H. T. Hahn, “Characterization of the Laminated Object Manufacturing (LOM) Process”, Rapid Prototyping Journal, Vol. 6, 2000, pp. 36-49.
[31] J. Y. Fuh, L. Lu, C. C. Tan, Z. X. Shen and S. Chew, “Curing Characteristics of Acrylic Photopolymer Used in Stereolithography Process”, Rapid Prototyping Journal, Vol. 5, 1999 , pp. 27–34.
[32] http://www.artcorp.com/stereolithography.html
[33] http://imagestack.co/203804153-sla-3d-printing.html
[34] J. Heinzl and C. H. Hertz , “Ink-Jet Printing”, Advance in Electronics and Electron Physics ,Vol. 65, 1985, pp.91-171.
[35] L. P. Hue, “Progress and Trends in Ink-Jet Printing Technology”, Journal of Imaging Science and Technology, Vol.42, 1998, pp.49-62.
[36] 張弘儒,“以壓電式噴墨製程製備金屬微接點及導線之研究”, 國立成功大學材料科學及工程學系博士論文, 2011.
[37] B. Weng, R. L. Shepherd, K. Crowley, A. J. Killard and G. G. Wallace,“Printing Conducting Polymers”, Analyst, Vol.135, 2010, pp.2779–2789.
[38] H. Kipphan, “Handbook of Print Media”, Springer Press, 2001.
[39] https://www.pinterest.com/pin/552394710516999928/
[40] K. Lu and W. T. Reynolds, “3DP Process for Fine Mesh Structure Printing”, Powder Technology, Vol.187, 2008, pp.11–18.
[41] http://www.me.vt.edu/dreams/material-jetting/
[42] I. Zein, D. W. Hutmacherb, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol.23, 2002, pp.1169 –1185.
[43] http://www.custompartnet.com/wu/fused-deposition-modeling
[44] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan,“Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research, Vol. 55, 2001, pp.
203–216.
[45] N. Guo and M. C. Leu, “Additive Manufacturing: Technology, Applications and Research Needs”, Front. Mech. Eng., Vol.8, 2013, pp. 215–243.
[46] J. P. Kruth, M. C. Leu and T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping”, Annals of the ClRP, Vol. 47, 1998, pp.525-540.
[47] C. E. Carraher, “Carraher’s Polymer Chemistry”, FL-CRC Press, 2011.
[48] P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, 1953.
[49] B. Wendel, D. Rietzel, F. Kuhnlein, R. Feulner, G. Hulder and E. Schmachtenberg, “Additive Processing of Polymers”, Macromol. Mater. Eng., Vol.293, 2008, pp. 799–809.
[50] G. N. Levy, R. Schindel and J. P. Kruth, ‘‘Rapid Manufacturing and Rapid Tooling with Layer Manufacturing Technologies, State of the Art and Future Perspectives’’, Annals of the CIRP, 2003, pp. 589–609.
[51] T. Osswald, E. Bauer, S. Brinkmann, K. Oberbach and E.
Schmachtenberg, "International Plastics Handbook", Carl Hanser Publishers, 2006.
[52] O. V. Aguilera, C. P. Pathak, J. Shi, D. Watson and D. C. Neckers,"Photopolymerization Studies Using Visible Light Photoinitiators", Macromolecules, Vol.25, 1992, pp.541-547.
[53] S. Maruo, O. Nakamura and S. Kawata,“Three Dimensional
Microfabrication with Two-photon-absorbed Photopolymerization”, Optics Letters, Vol. 22, 1997, pp.132-134.
[54] https://en.wikipedia.org/wiki/Photopolymer
[55] G. Wurm, B. Tomancok, K. Holl and J. Trenkler, “Prospective Study on Cranioplasty with Individual Carbon Fiber Reinforced Polymer Implants Produced by Means of Stereolithography”, Surg. Neurol. ,Vol.62, 2004, pp.510–521.
[56] S. V. Asmussen, I. Edellerba, W. F. Schroeder and C. I. Vallo,“Photopolymerization of Methacrylate Monomers Using
Poly-hedralsilsesquioxanes Bearing Side-chain Amines as Photoinitiator”, European Polymer Journal, Vol.48, 2012, pp. 309–317.
[57] http://www.me.utexas.edu/news/2012/0712_sls_history.php
[58] J. P. Kruth, X. Wang, T. Laoui and L. Froyen,“Lasers and Materials in Selective Laser Sintering”, Assembly Automation, Vol. 23, 2003, pp.357–371.
[59] http://www.eos.info/
[60] G. Alscher, Ph.D. Thesis, Universität GH- Essen, 2000.
[61] K. Mcalea, "Materials and Applications for Selective Laser Sintering Process", Proceedings of the 7th European Conference on Rapid Prototyping and Manufacturing, 1998.
[62] https://en.wikipedia.org/wiki/Fused_deposition_modeling
[63]Roland Berger Strategy Consultants, “Additive Manufacturing: a Game Changer for the Manufacturing Industry”, EOS Company Technical Reports, 2013.
[64]E. Attar,“Simulation of Selective Electron Beam Melting Processes”, Ph.D. Thesis, Universität ErlangenNürnberg,2011.
[65] M. Shiomi, A. Yoshidome, F. Abe and K. Osakada, “Finite Element Analysis of Melting and Solidifying Processes in Laser Rapid Prototyping of Metallic Powders”, International Journal of Machine Tools and Manufacture, Vol. 39, 1999, pp. 237–252.
[66]蔡穎、宋金玲、韓劍宏, “冶金化工過程與設備”, 化學工業出版社, 2013.
[67] http://www.matter.org.uk/matscicdrom/manual/df.html
[68]W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering”, John Wiley & Sons Inc., 2011.
[69] R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, “Physical Metallurgy Principle”, Cengage Learning Press, 2009.
[70] 楊衛國、項宏福、李德輝,“金屬液態成型原理與工藝”, 江蘇大學出版社 , 2012.
[71]http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_5/backbone/r5_3_1.html
[72] R. J. Kirkpatrick, “Crystal Growth from the Melt: a Review”, American Mineralogist, Vol. 60, 1975, pp. 798-814.
[73] R. J. Kirkpatrick, G. R. Robinson and J. F. Hays, “Kinetics of Crystal Growth from Silicate Melts: Anorthite and Diopside”, Journal of Geophysical Research, Vol.81, 1976, pp.5715-5720.
[74] J. Xu, S. Srinivas and H. Marand, “Equilibrium Melting Temperature and Undercooling Dependence of the Spherulitic Growth Rate of Isotactic Polypropylene”, Macromolecules, Vol.31, 1998, pp. 8230-8242.
[75] 楊世銘, “傳熱學”, 高等教育出版社, 2010.
[76] 楊強生, “高等傳熱學”, 上海交通大學出版社, 2001.
[77] F. A. Morrison, “an Introduction to Fluid Mechanics”, Cambridge University Press, 2013.
[78] A. Simchi, F. Pelzoldt and H. Pohl, “Direct Metal Laser Sintering: Material Considerations and Mechanisms of Particle Bonding”, the International Journal of Powder Metallurgy, Vol.37, 2001, pp.49-61.
[79] 李秉中,“利用X 光繞射峰形探討奈米粉末的粒徑分佈”, 國立中央大學物理學系碩士論文, 2003.
[80] https://commons.wikimedia.org/wiki/File:Bimodal_geological.PNG
[81] B. V. Schueren and J.P. Kruth, “Powder Deposition in Selective Metal Powder Sintering”, Rapid Prototyping Journal, Vol. 1, 1995, pp. 23 – 31.
[82] 顧冬冬、沈以赴、潘琰峰、胥橙庭, “直接金屬粉末雷射燒結成形機制的研究”, 材料工程學報, 第5 期, 2004, pp.42-48.
[83] 張劍鋒, “Ni 基金屬粉末雷射直接燒結成形及關鍵技術研究”, 南京航空航天大學博士論文, 2002.
[84] 唐亞新, “雷射燒結快速成形技術及其在精密鑄造中的應用研究”, 南京航空航天大學博士論文, 1999.
[85] L. Lu, J. Fuh and Y. S. Wong, “Laser Induced Materials and Processes for Rapid Prototyping”, Kluwer Academic Publishers, 2001.
[86] E. C. Santos, M. Shiomi, K. Osakada and T. Laoui, “Rapid Manufacturing of Metal Components by Laser Forming”, International Journal of Machine Tools and Manufacture,Vol.46, 2006, pp.1459–1468.
[87] https://en.wikipedia.org/wiki/Absorptivity
[88] N. K. Tolochko, Y. V. Khlopkov, S. E. Mozzharov, M. B. Ignatiev, T. Laoui and V. I. Titov, “Absorptance of Powder Materials Suitable for Laser Sintering”, Rapid Prototyping Journal, Vol.6, 2000, pp.155–160.
[89] 鄧琦林、方建成, “選擇性雷射燒結粉末的參數分析”, 製造技術與機床學報, Vol.10, 1997, pp. 26-29.
[90]李遠才, “金屬液態成型工藝”, 化學工業出版社, 2007.
[91] D. A. Siginer, “Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids”, Springer International Publishing, 2014.
[92] J. Katz, “Introductory Fluid Mechanics”, Cambridge University Press, 2010.
[93]果世駒,“粉末燒結理論”,冶金工業出版社,1998.
[94] M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow,“Direct Selective Laser Sintering of Metals”, Rapid Prototyping Journal, Vol.1, 1995, pp. 26 – 36.
[95]胡漢起, “金屬凝固原理”, 機械工業出版社, 2012.
[96] http://baike.spbz.org/doc-view-45154.html
[97] https://zh.wikipedia.org/wiki/%E6%B5%B8%E6%B6%A6
[98] D. O. Njobuenwu, E. O. Oboho and R. H. Gumus, “Determination of Contact Angle from Contact Area of Liquid Droplet Spreading on Solid Substrate”, Leonardo Electronic Journal of Practices and Technologies,Vol.10, 2007, pp.29-38.
[99] http://www.ramehart.com/glossary.htm
[100]https://zh.wikipedia.org/wiki/%E6%8E%A5%E8%A7%B8%E8%A7
%92
[101] https://en.wikipedia.org/wiki/Marangoni_effect
[102] G. Tsotridis, H. Rother and E. D. Hondros,“Marangoni Flow and the Shapes of Laser melted Pools”,Naturwissenschaften, Vol.76, 1989, pp.216-218.
[130] J. Mazumder, “Overview of Melt Dynamics in Laser Processing”,Optical Engineering, Vol.30, 1991, pp.1208-1219.
[131] J. P. Kruth, G. Levy, F. Klocke and T. H. C. Childs, “Consolidation Phenomena in Laser and Powder-bed Based Layered Manufacturing”,Annals of the CIRP, Vol.56, 2007, pp.730-759.
[132]https://sites.google.com/site/tecnorlopez33/tema1-ensayos-y-tratamientos/08-tratamientos-termicos
[133] A. Bontha , N. W. Klingbeil, P. A. Kobryn and H. L. Fraser, “Effects of Process Variables and Size-scale on Solidification Microstructure in Beam-based Fabrication of Bulky 3D Structures”, Materials Science & Engineering. A. Structural Materials: Properties, Microstructure and
Processing, Vol. 513–514, 2009, pp. 311–318.
[134] K. K. B. Hon and T. J. Gill, “Selective Laser Sintering of SiC/polyamide Composites”, CIRP Annals, Vol.52, 2003, pp.173-176.
[135] J. Wilkes and K. Wissenbach, “Rapid Manufacturing of Ceramic Components for Medical and Technical Applications via Selective Laser Melting”, Conferences Euro-uRapid, 2006.
[136] G. Schmalz, H. Langer and H. Schweikl, “Cytotoxicity of Dental Alloy Extracts and Corresponding Metal Salt Solutions”, Journal of Dental Research,Vol.77, 1998, pp.1772-1778.
[137]陳惠珍, “HTML5、JavaScript、CSS、XHTML、Ajax 網頁程式設
計”, 碁峯資訊股份有限公司出版, 2015.
[138]http://www.dotblogs.com.tw/yuan0716/archive/2011/11/01/openhtml5.aspx
[139]http://www.snjh.tc.edu.tw/~cmlee/doc/school/圖檔的儲存格式.htm
[140]林貞君、林旻澐編譯, “材料科學與工程導論”, 高立出版社, 2014
校內:2020-09-03公開