| 研究生: |
黃若昀 Huang, Ruo-Yun |
|---|---|
| 論文名稱: |
組裝量子點於交流電場下螢光生命週期的表現及其對FRET分子檢測的影響 Fluorescence Lifetime Responses of Quantum-Dot Assembly in AC Electric Fields and Its Impacts on Quantum-Dot-Based FRET Probing |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 215 |
| 中文關鍵詞: | 組裝量子點 、交流電場作用 、螢光共振能量轉移(FRET) 、螢光生命週期 、分子檢測 |
| 外文關鍵詞: | Quantum Dot, Fluorescence Resonance Energy Transfer, Fluorescence lifetime, AC Electro-kinetics |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究緣起是為了解決以交流電場主動组裝量子點(QDs)粒子並用以增益FRET檢測所沿申之議題。先前我們實驗室的研究發現,於微電極上已組裝或聚集的QDs螢光發光訊號會隨交流電場來回開/關有所響應,而FRET亦會表現出相對應的響應模式。為了進一步探索此奇特發光響應的成因,本論文針對QD量測其螢光生命週期的表徵,側重於微觀發光層次上去發掘QD如何因交流電場作用改變其發光機制,並藉此一併研究相應的FRET過程。
本文第三章,首先我於宏觀層次下觀察QD及相應的FRET在交流電場作用下的螢光發光響應。於溶液中利用電場集濃並組裝螢光供體QDs於城垛式ITO電極表面,再以同樣方式捕捉螢光受體Alexa647-ssDNAs,以產生FRET訊號。我發現QDs發光當電場開啟時可變亮或變暗,而相應的FRET訊號則表現出增強或不變的響應。再進一步觀察未鍵結Alexa647-ssDNAs的純QDs,在開/關電場時,於電極邊緣呈現向序性組裝的QDs發光會變暗/變亮;而電極中央無序聚集的QD發光訊號則呈現相對較不明顯的變化。
為了探討交流電場如何影響QD及FRET的發光響應,第四章建立穩態及脈衝螢光動力學模式,以放光及非放光機制詮釋其發光行為,前者說明第三章觀察之QD及FRET的發光,後者則應用於透過脈衝螢光方式探測螢光生命週期的實驗。
基於第四章建立的動力學模式,第五章說明利用時間解析螢光光譜儀(Time-Resolved Photoluminescence Spectroscopy) 探測螢光生命週期的相關實驗儀器與操作設計,並對實驗數據進行擬合分析。
第六章針對聚集於城垛ITO電極上的QDs螢光生命週期隨交流電場作用的響應進行探討。首先,觀察未鍵結的QDs,發現在開/關電場時,於電極邊緣向序性組裝的QDs螢光生命週期縮短/增長,與其發光響應一致,然而,電極中央區無序聚集的QDs生命週期則無變化。兩者的螢光生命週期皆較QD懸浮溶液的螢光生命週期短。另外,發現QD在鍵結ssDNA後,其螢光放射光譜藍移,且根據對照組實驗發現有無Alexa647存在皆會發生藍移現象。而向序性組裝QDs在鍵結Alexa647-ssDNAs並產生藍移後,開啟電場的瞬間已鍵結的QDs螢光生命週期增長。綜合螢光生命週期與穩態螢光發光響應,搭配第四章建立之動力式推論向序性組裝QDs及FRET於交流電場作用下產生的機制。於電場作用下QD螢光生命週期的改變推知FRET效率降低,然而於第三章用顯微鏡所觀察到的穩態FRET訊號竟呈現增強或不改變,而唯一能夠調合這看似衝突的結果僅能從受體Alexa647發光響應也同時受電場影響來解釋。
在本文第七章以金作為實驗裝置探測在無電場作用下發生FRET前後的Alexa647螢光生命週期響應。從已鍵結供體QD後的Alexa647放光資訊中發現了兩個螢光生命週期:較短者為Alexa647本身的螢光生命週期,另一較長的螢光生命週期來自於鍵結後的QD所貢獻,另外,發現鍵結QD後的Alexa647本身的螢光生命週期未改變,而相對應的螢光強度則有大幅減少的趨勢。以上觀察結果可以證實能量從供體QD轉移至受體Alexa647的FRET過程。根據Alexa647在鍵結QD後於無電場時呈現兩個螢光生命週期且較長的來自於與QD的鍵結,又由於在電場作用下,已鍵結的QD的螢光生命週期有表現出增長的響應,這意味與之相連的Alexa647的螢光生命週期行為勢必有所改變,事實上,穩態FRET訊號正比於受體螢光生命週期及FRET效率乘積,而FRET效率會隨供體螢光生命週期增長而降低,這也解釋為何穩態FRET訊號於電場開啟下即使供體螢光生命週期增長仍可表現出增強或不改變的結果。
This thesis is motivated by the efforts on the use of directional assembly of quantum dots (QDs) under AC electric fields in promoting Fluorescence Resonance Energy Transfer (FRET) detection. I find that the emission of the QDs trapped along the microelectrode edges is either increased or decreased when turning the field on. The associated FRET response is either increased or keeps unchanged. Aiming at looking more into these unusual phenomena at the microscopic level, I investigate how the fluoresence lifetime of QD behaves in the presence of AC electric fields. The impacts on the subseqent FRET process are also studied as well. I find that the lifetime of bare QDs is decreased/increased when the applied AC field is turned on/off. For the directional QD assemblies trapped along the electrode edges, after they are bound to Alexa647-ssDNA with an occurrence of the blue shift, their lifetime will be prolonged by applying an AC field. Alexa647 after being bound to QD has already displayed two lifetimes with the longer one due to its binding to QD. If bound QD displays any increase in its lifetime in the presence of AC fields, there must be some characteristic changes in the associated Alexa647's lifetime. To rationalize the increased or unchanged response of the FRET emission in AC fields, it is necessary to take into account a possible change in the acceptor’s lifetime in AC fields.
Becker, K., Lupton, J. M., Müller, J., Rogach, A. L., Talapin, D. V., Weller, H., & Feldmann, J. 2006 Electrical control of Förster energy transfer. Nature materials, 5(10), 777.
Chen, R. Y., Zhang, G. F., Qin, C. B., Gao, Y., Xiao, L. T., & Jia, S. T. 2017 Modification of single molecule fluorescence using external fields. Frontiers of Physics, 12(5), 128101.
Cheng, I. F., Han, H. W., & Chang, H. C. 2012 Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species. Biosensors and Bioelectronics, 33(1), 36-43.
Davis, J. J., Burgess, H., Zauner, G., Kuznetsova, S., Salverda, J., Aartsma, T., & Canters, G. W. 2006 Monitoring interfacial bioelectrochemistry using a FRET switch. The Journal of Physical Chemistry B, 110(41), 20649-20654.
Hilczer, M., & Tachiya, M. 2002 Electric field effects on fluorescence quenching due to electron transfer. II. Linked donor–acceptor systems. The Journal of chemical physics, 117(4), 1759-1767.
Hilczer, M., Traytak, S., & Tachiya, M. 2001 Electric field effects on fluorescence quenching due to electron transfer. The Journal of Chemical Physics, 115(24), 11249-11253.
Jing, P., Zheng, J., Ikezawa, M., Liu, X., Lv, S., Kong, X., ... & Masumoto, Y. 2009 Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. The Journal of Physical Chemistry C, 113(31), 13545-13550.
Macotela, L. V., Douda, J., Torchynska, T. V., Sierra, R. P., & Shcherbyna, L. 2010 Transformation of photoluminescence spectra at the bioconjugation of core‐shell CdSe/ZnS quantum dots. physica status solidi c, 7(3‐4), 724-727.
Medintz, I. & Hildebrandt, N. 2014 FRET-Forster Resonance Energy Transfer, Germany: Wiley-VCH, Germany.
Mehata, M. S. 2015 Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Scientific reports, 5, 12056.
Morgan, H. and Green, N.G., 2002 AC Electrokinetics: colloids and nanoparticles, Research Studies Press, Baldock, UK,.
Parkhurst, K. M., & Parkhurst, L. J. 1995 Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA. Biochemistry, 34(1), 285-292.
Rosen, S., Schwartz, O., & Oron, D. 2010 Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Physical review letters, 104(15), 157404.
Rothenberg, E., Kazes, M., Shaviv, E., & Banin, U. 2005 Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano letters, 5(8), 1581-1586.
Stone, H. A., Stroock, A. D., & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 36, 381-411.
Stryer, L. 1978 Fluorescence energy transfer as a spectroscopic ruler. Annual review of biochemistry, 47(1), 819-846.
Vazquez, A. Q., Torchynska, T. V., Espinola, J. C., Gómez, J. J., & Douda, J. 2013 Electronic effects in emission of core/shell CdSe/ZnS quantum dots conjugated to anti-Interleukin 10 antibodies. Journal of luminescence, 143, 38-42.
Zhang, C. Y., & Johnson, L. W. 2007 Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit. Angewandte Chemie International Edition, 46(19), 3482-3485.
Zhang, C. Y., Yeh, H. C., Kuroki, M. T., & Wang, T. H. 2005 Single-quantum-dot-based DNA nanosensor. Nature materials, 4(11), 826.
陳易靖,以電荷動力實現快速且高靈敏度的FRET分子感測,國立成功大學,碩士論文,2017。
梁紫涵,整合DNA拉伸及交流電荷動力作用製備快速且高靈敏度的FRET分子感測器,國立成功大學,碩士論文,2017。
趙慶安,在交流電荷動力下實現定向組裝奈米粒子和DNA分子來增益FRET感測,國立成功大學,碩士論文,2018。
鄭振甫,觀察量子點組裝在切換電場下的發光響應以及其在FRET分子感測上的應用,國立成功大學,碩士論文,2018。
林姿妙,應用交流電荷動力作用組裝量子點及其所誘導之反常發光響應: 以動態FRET指紋實現主動調控分子檢測的新方案,國立成功大學,碩士論文,2019。