| 研究生: |
林宜憲 Lin, Yi-Shian |
|---|---|
| 論文名稱: |
聚焦與多光束對雷射光在生物組織中的傳播及其熱響應的影響 Effects of focusing and multibeam on laser light propagation in tissue and its thermal response |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 葡萄酒樣色素斑 、Delta蒙地卡羅法 、表皮 、血管 、真皮 |
| 外文關鍵詞: | Arrhenius rate process equation, epidermis, vessel, dermis, port wine stain, delta Monte Carlo Method |
| 相關次數: | 點閱:223 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以研究投光方式對雷射光在生物組織中的傳播及其熱響應的影響為目的,以葡萄酒樣色素斑為研究對象,提出一簡單皮膚模型,利用Delta蒙地卡羅法模擬雷射在組織內的被吸收能量分佈,其結果再結合熱傳方程式,以求得組織中的溫度分佈,再以阿瑞尼阿斯方程式求得各個時間步驟的組織損傷分佈。
本研究的結果顯示:在能量分佈方面,利用凸透鏡聚焦會使血管及表皮的能量吸收密度增加,不過會降低血管及表皮的能量吸收密度比值。利用多光束入射可以在表皮的吸收不會增加太多下,增加血管的組織吸收。在溫度及損傷分佈方面,在不破壞表皮組織的前提下,結果顯示使用多光束聚光方式治療效果比單透鏡聚焦投光方式更佳。
The purpose of this research is to examine the light propagation and the thermal response in tissues with different ways of laser-light delivering. In this work, we take the port wine stain as an example, and adopt a simple skin model. To obtain the energy deposition, we use the Delta Monte Carlo method to simulate the light propagation. Then we solve the heat conduction equation to obtain the temperature distribution. Finally, we use the Arrhenius rate process equation to get the thermal injury for each time step.
The results show that using the convex lens can increase the deposited energy in the blood vessel and the epidermis, but reduce the ratio of deposited energy in the blood vessel and the epidermis. The multibeam projection of laser can increases the deposited energy of the blood vessel without increasing the deposited energy of the epidermis too much. In the temperature and damage distribution aspect, under the requirement without destroying the epidermal tissues, the results show that the treatment by using multibeam with lens focusing is better than that using single focusing lens.
1.Deutsch, T. F., 1997, “Lasers and optics in health care,” Proceedings of the IEEE, vol. 85, pp. 1797-1816.
2.Farrel, T. J., Patterson, M. S., and Wilson B. C., 1992, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” medical physics, vol. 19, pp. 879-888.
3.Yamada, Y., 1995, Light-tissue interaction and optical imaging in biomedicine, Annual Review of Heat Transfer, vol. 6, Begell House, New York.
4.Jones, M. R., 1998, “Use of a genetic algorithm in near-infrared imaging”, Advances in Heat and Mass Transfer in Biotechnology, ASME HTD, vol. 362 /BED-vol. 40, pp. 177-183.
5.Arridge, S. R., 1999, “Optical tomography in medical imaging,” inverse problems, vol. 15, R41-R93.
6.Ou, N.-R., and Wu, C.-Y., 2002, “Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium,” International Journal of Heat Mass Transfer, vol. 45, pp. 4663-4674.
7.Boulnois, J. L., 1986, “Photophysical processes in recent medical laser developments: a review,” Laser in Surgery and Medicine, vol. 1, pp. 47-66.
8.Keijzer, M., Pickering, J. W., and van Gemert, M. J. C., 1991, “Laser beam diameter for port wine stain treatment,” Laser in Surgery and Medicine, vol. 11, pp. 601-605.
9.Mordon, S., Beacco, C., Rotteleur, G., and Brunetaud, J. M., 1993, “Relationship between skin surface temperature and minimal blanching during argon, Nd-YAG 532, and CW dye 585 laser therapy of port-wine stains,” Laser in Surgery and Medicine, vol. 13, pp. 124-126.
10.Hu, X., 1995, “Efficient use of Q-switched lasers in the treatment of cutaneous lesions,” SPIE proceedings, vol. 2395, pp. 586-591.
11.Song, Z., Dong, K., Hu, X. H., and Lu, J. Q., 1999, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Applied Optics, vol. 38, pp. 2944-2949.
12.Whelan, W. M., and Wyman, D. R., 1999, “A model of tissue charring during interstitial laser photocoagulation: estimation of char temperature,” Advances in Heat and Mass Transfer in Biotechnology, ASME HTD, vol. 363, pp. 103-107.
13.Sturesson, C. and Andersson-Engels, S., 1996,“Mathematical modeling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains,”Conference on Lasers and Electro-Optics Europe, vol. 41, pp. 413-428.
14.呂耀卿, 中國人皮膚病圖譜, 1987, 橘井文化, 台北.
15.陳明君, 官裕宗及曾興隆, 1997,“以脈衝式染料雷射治療皮膚血管病灶四年經驗,”中華皮誌, vol. 15, pp. 1-6.
16.McMillan, K., 2003,“Use of Lasers to Treat Port Wine Stain Birthmarks,”Applied Spectroscopy Reviews, vol. 38, pp. 495-511.
17.Welch, A. J., Pearce, J. A., Diller, K. R., Yoon, G., and Cheong, W. F., 1989, “Heat Generation in Laser Irradiated Tissue,” Journal of Biomechanical Engineering, vol. 111, pp. 62-68.
18.Smithies, D. J. and Butler, P. H., 1995,“Modelling the distribution of laser light in port-wind stains with the Monte Carlo method,” Conference on Lasers and Electro-Optics Europe, vol. 40, pp. 701-731.
19.Welch, A. J., and Gardner, C. M. 1997, “Monte Carlo model for determination of the role of heat generation in laser-irradiated tissue,” Journal of Biomechanical Engineering, vol. 119, pp. 489-495.
20.Pfefer, T. J., Barton, J. K., Chan, E. K., Ducros, M. G., Sorg, B. S., Milner, T. E., Nelson, J. S., and Welch, A. J., 1996,“A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 4, pp. 934-942.
21.Pfefer, T. J., Barton, J. K., Smithies, D. J., Milner, T. E., Nelson, J. S., Martin J. C., and Welch, A. J., 1999,“Modeling laser treatment of Port Wine Stains with a computer-reconstructed biopsy,”Laser in Surgery and Medicine, vol. 24, pp. 151-166.
22.Pfefer, T. J., Smithies, D. J., Milner, T. E., Martin J. C., Nelson, J. S. and Welch, A. J., 2000,“Bioheat transfer analysis of cryogen spray cooling during laser treatment of Port Wine Stains,”Laser in Surgery and Medicine, vol. 26, pp. 145-157.
23.Glenn,T. N., Rastegar, S. and Jacques, S. L., 1996, “Finite element analysis of temperature controlled coagulation in laser irradiated tissue,” IEEE Transactions on Biomedical Engineering, vol. 43, pp. 79-86.
24.Lucassen, G. W., Verkruysse, W., Keijzer, M., and Martin J. C., 1996, “Light distributions in a Port Wind Stain model containing multiple cylindrical and curved blood vessels,” Lasers in Surgery and Medicines, vol. 18, pp. 345-357.
25.Wang, L. V., Nordquist, R. E. and Chen, W.-R., 1997, “Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: a Monte Carlo study,” Applied Optics, vol. 36, no. 31, pp. 8286-8291.
26.Fowler, A. J. and Mengűc, M. P., 2000, “Propagation of focused and multibeam laser energy in biological tissue,” Journal of Biomechanical Engineering, vol. 122, pp. 534-540.
27.Wang, L. V. and Liang, G., 1999, “Absorption distribution of an optical beam focused into a turbid medium,” Applied Optics, vol. 38, no. 22, pp. 4951-4958.
28.Barton, J. K., Rollins, A., Yazdanfar, S., Pfefer, T. J., Westphal V., and Izatt, J. A., 2001, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Conference on Lasers and Electro-Optics Europe, vol. 46, pp. 1665-1678.
29.Tunnell, J. W., Wang, L. V., and Anvari, B., 2003, “Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study” Applied Optics, vol. 42, pp. 1367-1378.
30.Wang, L. V., Jacques, S. L., and Zheng, L., 1995, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine, vol. 47, pp. 131-146.
31.Lux, I., and Koblinger, L., 1991, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, pp. 222-226, CRC Press, New York.
32.Modest, M. F., 2003, Radiative Heat Transfer, 2nd ed., Chap. 9 and 20, McGraw Hill, New York.
33.Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid Mechanics and Heat Transfer, 2nd ed. Chap. 3, Taylor & Francis, Washington.