| 研究生: |
林建銘 Lin, Chien-ming |
|---|---|
| 論文名稱: |
氮化鎵材料之實際空間轉移電晶體磊晶結構之研究與製作 The investigation and fabrication of GaN-based real-space transfer transistors |
| 指導教授: |
郭宗枋
Guo, Tzung-fang 李清庭 Lee, Ching-ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氮化鎵 、實際空間轉移電晶體 |
| 外文關鍵詞: | GaN, real-space transfer transistors |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵系列半導體材料,相當適合應用於光電元件以及高頻、高功率的電子元件之製作。直接能隙之氮化鎵系列的半導體材料具有低雜訊、高電子飽和速度、高崩潰電壓以及高工作溫度等優點。基於上述優點,就已蕭特基接觸閘極之元件而言,已有金半場效電晶體、異質接面場效電晶體以及高電子移動率電晶體等元件的研究。我們利用載子在二維電子氣通道中的高移動率以及大電場操作下的熱電子效應及穿隧效應,使載子脫離二維電子氣通道,進入較低移動率的通道層,藉此產生負微分電阻現象。負微分電阻效應更是目前最有力的微波產生機制。傳統的金氧半場效電晶體以及金半場效電晶體可用於組成邏輯電路,但這需要多個元件架構才能執行單一邏輯程式,而單一位置空間轉移電晶體即可執行邏輯電路中的數學功能,在積體電路製作上,可以達到整合及微縮的應用目的。在本研究中,希望製作高頻、高波峰波谷電流比之負微分電阻特性之位置空間轉移電晶體,以提升積體電路微縮之能力與競爭力。
GaN-based semiconductors are promising candidates, not only for optoelectronic devices, but also for high-frequency and high-power electronic devices. Advantages of these direct energy bandgap GaN-based semiconductors include low generation noises, high electron saturation velocity, high breakdown voltage, and high operation temperature. In view of the these advantages, GaN-based semiconductors have been successfully used in electronic devices and optoelectronic devices. Using Schottky gate, the performances of metal-semiconductor field effect transistors (MESFETs), heterojunction field effect transistors (HFETs), and high electron mobility transistors (HEMTs) have been demonstrated. We used the properties of high electron mobility in two dimensional electron gases channel, hot carrier effect and tunneling effect at high electrical field to induce the transport of electrons from high mobility channel to adjacent channel with low carrier mobility. Owing to this phenomenon, negative differential resistance (NDR) will appear and it is a powerful microwave mechanism up to now. Conventional metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor field effect transistors (MESFETs) can be used to fabricate logic circuits, but one logic function needs several MOSFETs or MESFETs. A real-space transfer transistors (RSTTs) could operate several logic functions and can be used in integrated circuits to reduce the number of devices and circuit area. In this study, real-space transfer transistors (RSTTs) with high cut-off frequency and obvious negative differential resistance phenomenon would be fabricated to promote the scaling and competitive ability in the integrated circuits.
[1] J. V. Lirman and H. S. Zhdanov, Acta Physicochem. USSR 6, 306, (1930).
[2] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., 15, 327, (1969).
[3] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., 48, 353, (1986).
[4] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, ”Effect of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN(0<x<0.4) films grown on sapphire substrate by MOVPE,” J. Crystal Growth, 98, 209, (1989).
[5] H. Amano, I. Akasaki, T. Kozowa, K. Hiramatsu, N. Sawaki, K. Ikeda and Y. Ishii, “Electron beam effects on blue luminescence of zinc-doped GaN,” J. Luminescence, 40-41, 121, (1988).
[6] S. Nakamura, “InGaN-based violet laser diodes,” Semicond. Sci. Technol., 14, R27, (1999).
[7] www.cree.com
[8] P. G. Neudeck, ”Performance limiting micropipe defects in silicon carbide wafers,” IEEE Electron Device Lett., 15, 63 , (1994).
[9] M. Syvajarvi, PhD thesis, Linkoping University, (1999).
[10] F. C. Wellstood, C. Urbina and J. Clarke,” Hot-electron effect in materials,” Phys. Rev. B, 49, 5942, (1994).
[11] L. Kuzmin, D. Chouvaev, M. Tarasov, P. Sundquist, M. Willander and T. Claeson,” On the Concept of a Normal Metal Hot-Electron Microbolometer For Space Applications,” IEEE Trans. Appl. Supercond, 9, 3186, (1999).
[12] S. X. Qu, A. N. Cleland and M. R. Geller, ”Hot electron in low- dimensional phonon systems,” Phys. Rev. B, 72, 224301, (2005).
[13] M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson and M. B. Ketchen, “Hot electrons and energy transport in metals at millikelvin temperatures,” Phys. Rev. Lett., 55, 422, (1985).
[14] P. M. Echternach, M. R. Thoman, C. M. Gould and H. M. Bozler, “Electron-phonon scattering rates in disordered metallic films below 1K,” Phys. Rev. B, 46, 10339, (1992).
[15] A. Sergeev and V. Mitin, “Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials,” Phys. Rev. B, 61, 6041, (2000).
[16] J. T. Karvonen, L. J. Taskinen and I. J. Maasilta, ”Observation of disorder-induced ewakening of electron-phonon interaction in thin noble-metal films,” Phys. Rev. B, 72, 012302, (2005).
[17] M. A. Littlejohn, J. R. Hauser and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett. 26, 625, (1975).
[18] B. Gelmont, K. Kim and M. Shur, “Monte Carlo simulation of electron transport in gallium nitride,” J. Appl. Phys., 74, 1818, (1993).
[19] Z. C. Huang and R. Goldberg, “Direct observation of transferred-electron effect in GaN,” Appl. Phys. Lett., 67, 2825, (1995).
[20] J. Shirakashi, M. Shimizu and H. Okumura, “GaN-based quantum-effect electron devices using quantum interference of hot electron waves,” Phys. Stat. Sol. (a), 176, 189, (1999).
[21] A. Kikuchi, R. Bannai and K. Kishino, “AlGaN resonant tunneling diodes grown by rf-MBE,” Phys. Stat. Sol. (a), 188, 187,( 2001).
[22] F. Sacconi, A. Di Carlo1) and P. Lugli, “Modeling of GaN-based resonant tunneling diodes: influence of polarization fields,” Phys. Stat. Sol. (a), 190, 295, (2002).
[23] C. T. Foxon and S. V. Novikov, “Current-voltage instabilities in GaN/AlGaN resonant tunneling structures,” Phys. Stat. Sol. (c), 0, 2389, (2003).
[24] S. Golka, C. Pflugl, W. Schrenk and G. Strasser, “Negative differential resistance in dislocation-free GaN/AlGaN double-barrier diodes grown on bulk GaN,” Appl. Phys. Lett., 88, 172106, (2006).
[25] S. X. Qu, A. N. Cleland and M. R. Geller, “Hot electrons in low dimensional phonon systems,” Phys. Rev. B., 72, 224301, (2005).
[26] M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson and M. B. Ketchen, “Hot electrons and energy transport in metals at millikelvin temperatures,” Phys. Rev. Lett., 55, 422, (1985).
[27] A. Kastalsky and S. Luryi, “Novel real-space hot-electron transfer devices,” IEEE Electron Device Lett., 4, 334, (1983).
[28] A. King, P. R. Smith and Mark R. Pinto, “Functional Devices based on real space transfer in Si/SiGe structure,” IEEE Trans electon devices, 43, 1671, (1996).
[29] P. M. Mensz, P. A. Garbinski, A. Y. Cho, D. L. Sivco and S. Luryi“High transconductance and large peak-to-valley ratio of negative differential conductance in three-terminal InGaAs/InAlAs real-space transfer devices,” Appl. Phys. Lett., 57, 2558, (1990).
[30] K. Maezawa and T. Mizutani, High-frequency characteristics of charge-injection transistor-mode operation in AlGaAs/InGaAs/GaAs metal–insulator–semiconductor field-effect transistors. Jpn. J. Appl. Phys., 30, 1190, (1991).
[31] A review is available in Luryi S, Mastrapasqua M. Charge injection devices. In: Webster JG, editor. Wiley encyclopedia of electrical and electronic engineering, New York: Wiley, 3, 258, (1999).
[32] S. Luryi and A. Zaslavsky, ”Blue sky in SOI: new opportunities for quantum and hot-electron devices,” Solid State Electronics, 48, 877, (2004).
[33] 汪建民,”材料分析”, (1998).
[34] 周柏瑋,“離子佈植摻雜之氧化鋅特性研究”, (2004).
[35] G. K. Reeves and H. B. Harrison, IEEE Electron Device Lett., EDL3, 111, (1982).
[36] 高孝維, “N-型氮化鎵高熱穩定性歐姆接觸之研究”, 國立中央大學光電科學研究所碩士論文, (1999).
[37] Semiconductors Group IV Elements and III-V Compounds, edited by O. Madelung (Springer, Berlin, 1991).
[38] P. Hacke, T. Detchprohm, K. Hiramatsu and Sawaki, Appl. Phys. Lett., 63, 2676, (1993).
[39] M. S. Shur, D. K. Arch, R. R. Daniels, and J. K. Abrokwah, “New negative resistance regime of heterostructure insulated Gate Transistor (HIGFET) operation,” IEEE Electron Device Lett., EDL-7, 78, (1986).
[40] O. Ambacher,a) J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, and M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectricpolarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., 85, 3222, (2000).
[41] D. W. Palmer, “Characterisation of semiconductor heterostructures by capacitance methods,” Microelectronics Journal, 30, 665, (1999).
[42] B. Arnaudov, T. Paskova,S. Evtimova, E. Valcheva, M. Heuken and B. Monemar, ”Multilayer model for Hall effect data analysis of semiconductor structures with step-changed conductivity,” Phys. Rev. B, 67, 045314, (2003).
[43] A. Motayed , A.V. Davydov, W. J. Boettinger, D. Josell, A.J. Shapiro , I. Levin1, T. Zheleva and G. L. Harris , “Realization of improved metallization-Ti/Al/Ti/W/Au ohmic contacts to n-GaN to n-GaN for high temperature application,” Phys. Stat. Sol. (c), 2, p.2536, (2005).
[44] M. J. Wang, B. Shen, F. J. Xu, Y. Wang, J. Xu, S. Huang, Z. J. Yang, K. Xu, and G. Y. Zhang, “High temperature dependence of the density of two-dimensional electron gas in Al0.18Ga0.82N/GaN heterostructures,” Appl. Phys. A, 88, 715, (2007).
[45] S. Keller, S. Heikman, L. Shen, I. P. Smorchkova, S. P. DenBaars, and U. K. Mishra, “GaN–GaN junctions with ultrathin AlN interlayers : expanding heterojunction design,” Appl. Phys. Lett., 80, 10, (2002).
[46] D. W. Palmer, “Characterisation of semiconductor heterostructures by capacitance mehtods,” Microelectronics Journal, 30, 665, (1999).
[47] http://my.ece.ucsb.edu/mgrundmann/banding/htm