簡易檢索 / 詳目顯示

研究生: 周孟旻
Chou, Meng-Min
論文名稱: 綠色材料之碳足跡計算模型
Carbon footprint calculation model for green materials
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 89
中文關鍵詞: 碳盤查碳足跡LCA生命週期研究農業廢棄物
外文關鍵詞: Carbon Inventory, Carbon Footprint, Life cycle assessment, Agricultural waste
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 誌謝 VII 總目錄 VIII 表目錄 XII 圖目錄 XIV 第1章 緒論 1 1-1 前言 1 1-1-1 碳稅、碳權、碳交易 2 1-1-2 碳盤查、碳足跡 3 1-2 文獻回顧 3 1-2-1 碳足跡、碳盤查 4 1-2-1-1 Greenhouse Gas(GHG) Protocol(溫室氣體盤查議定書) 4 1-2-1-2 ISO 14067 5 1-2-1-3 生命週期評估(Life Cycle Assessment, LCA) 6 1-2-1-4 產品類別規則(Product Category Rules, PCR) 6 1-2-1-5 PAS2050 7 1-2-2 廢棄物再利用之產品的LCA 7 1-2-3 生質材料 8 1-2-4 農業廢棄物製生質材料的優勢 8 1-3 研究歷程與動機 10 第2章 應用理論 12 2-1 氣體吸附之碳捕捉產品的碳足跡 12 2-1-1 定義目標、系統邊界及生命週期 12 2-1-2 功能單元 13 2-1-3 原料與製造碳排 13 2-1-4 使用、處理碳排 15 2-2 複合填料強化之PMMA的碳足跡 15 2-2-1 定義目標、系統邊界及生命週期 16 2-2-2 功能單元 17 2-2-3 原料與製造碳排 17 2-2-4 使用、處理碳排 17 2-3 天然纖維門板的碳足跡 18 2-3-1 定義目標、系統邊界及生命週期 18 2-3-2 功能單元 20 2-3-3 原料與製造碳排 20 2-3-4 使用、處理碳排 21 第3章 實驗方法與設備 24 3-1 氣體吸附之碳捕捉產品的碳足跡 24 3-1-1 選定最合適產品 24 3-1-2 原料取得階段 24 3-1-3 製造階段 25 3-1-3-1 範疇一 25 3-1-3-2 範疇二 26 3-1-4 使用階段 27 3-1-5 處理階段 27 3-2 複合填料強化之PMMA的碳足跡 28 3-2-1 選定最合適產品 28 3-2-2 原料取得階段 28 3-2-3 製造階段 28 3-2-4 使用階段 28 3-2-5 處理階段 28 3-2-6 處理階段 29 3-3 天然纖維門板的碳足跡 30 3-3-1 選定最合適產品 30 3-3-2 原料取得階段 30 3-3-3 製造階段 30 3-3-4 使用階段 30 第4章 結果與討論 30 4-1 氣體吸附之碳捕捉產品的碳足跡 30 4-1-1 原料取得階段 30 4-1-2 製造階段 33 4-1-2-1 範疇一 33 4-1-2-2 範疇二 34 4-1-3 使用階段 36 4-1-4 處理階段 38 4-1-5 分析與討論 38 4-2 複合填料強化之PMMA板的碳足跡 40 4-2-1 原料取得階段 40 4-2-2 製造階段 43 4-2-2-1 範疇二 43 4-2-3 使用階段 46 4-2-4 處理階段 46 4-2-5 分析與討論 46 4-3 天然纖維門板的碳足跡 49 4-3-1 原料取得階段 49 4-3-2 製造階段 51 4-3-2-1 範疇二 51 4-3-3 使用階段 54 4-3-4 處理階段 54 4-3-5 分析與討論 56 4-4 碳足跡計算分析以及產品碳排改善討論 58 4-4-1 高碳排數據的原因 58 4-4-1-1 設備與製程容量問題 58 4-4-1-2 將研發作為製造 59 4-4-2 改善方法 60 4-4-3 改善結果 61 第5章 總結 65 5-1 結論 65 5-2 未來展望 66 參考文獻 67 附件A資料庫未記載之原料的碳足跡估算表 72

    1. Record High Revenues From Global Carbon Pricing Near $100 Billion. Available online: https://www.worldbank.org/en/news/press-release/2023/05/23/record-high-revenues-from-global-carbon-pricing-near-100-billion (accessed on
    2. 聯合國氣候變化框架公約-京都議定書. 1977.
    3. 聯合國氣候變化框架公約-巴黎協議. 2015.
    4. EU Emissions Trading System (EU ETS) - EU Climate Action. Available online: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en (accessed on
    5. statista. Value of the carbon market worldwide. Available online. Available online: https://www.statista.com/statistics/1334848/global-carbon-market-size-value/ (accessed on
    6. 臺灣2050淨零排放路徑及策略總說明.
    7. Cong, R.-G.; Wei, Y.-M. Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options. Energy 2010, 35, 3921-3931, doi:10.1016/j.energy.2010.06.013.
    8. establishing a carbon border adjustment mechanism. 2021.
    9. Hjuler, S.V.; Hansen, S.B. LCA of Biofuels and Biomaterials. Life cycle assessment: theory and practice 2018, 755-782.
    10. 溫室氣體盤查議定書-企業會計與報告標準; 2005.
    11. 溫室氣體排放量盤查登錄及查驗管理辦法. Available online: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020102 (accessed on
    12. Global-Warming-Potential-Values (August 2024).
    13. Wu, P.; Xia, B.; Wang, X. The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review. Renewable and Sustainable Energy Reviews 2015, 47, 142-150, doi:10.1016/j.rser.2015.02.055.
    14. Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinee, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J Environ Manage 2009, 91, 1-21, doi:10.1016/j.jenvman.2009.06.018.
    15. Suh, S.; Huppes, G. Methods for Life Cycle Inventory of a product. Journal of Cleaner Production 2005, 13, 687-697, doi:10.1016/j.jclepro.2003.04.001.
    16. Rosenbaum, R.K.; Hauschild, M.Z.; Boulay, A.-M.; Fantke, P.; Laurent, A.; Núñez, M.; Vieira, M. Life cycle impact assessment. Life cycle assessment: theory and practice 2018, 167-270.
    17. Ingwersen, W.W.; Subramanian, V. Guidance for product category rule development: process, outcome, and next steps. The International Journal of Life Cycle Assessment 2014, 19, 532-537.
    18. 台灣環境部PCR資料庫.
    19. Sinden, G. The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. The International Journal of Life Cycle Assessment 2009, 14, 195-203, doi:10.1007/s11367-009-0079-3.
    20. Prasara-A, J.; Grant, T. Comparative life cycle assessment of uses of rice husk for energy purposes. The International Journal of Life Cycle Assessment 2011, 16, 493-502, doi:10.1007/s11367-011-0293-7.
    21. Quispe, I.; Navia, R.; Kahhat, R. Life Cycle Assessment of rice husk as an energy source. A Peruvian case study. Journal of Cleaner Production 2019, 209, 1235-1244, doi:10.1016/j.jclepro.2018.10.312.
    22. Rabiee, N.; Dokmeci, M.R.; Zarrabi, A.; Makvandi, P.; Saeb, M.R.; Karimi-Maleh, H.; Jafarzadeh, S.; Karaman, C.; Yamauchi, Y.; Warkiani, M.E. Green Biomaterials: fundamental principles. 2023, 1, 1-4.
    23. 農業部門淨零碳排概論與案例分享 | 智慧農業. Available online: https://www.youtube.com/watch?v=Jf3RuVpFGV0 (accessed on
    24. Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.; Ventura, A. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling 2010, 54, 1231-1240.
    25. Rice, P.; O'Brien, D.; Shalloo, L.; Holden, N. Evaluation of allocation methods for calculation of carbon footprint of grass-based dairy production. Journal of Environmental Management 2017, 202, 311-319.
    26. Corbière-Nicollier, T.; Laban, B.G.; Lundquist, L.; Leterrier, Y.; Månson, J.-A.; Jolliet, O. Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and recycling 2001, 33, 267-287.
    27. 黃子騰. 以植物矽與木質素模板製備具二氧化碳吸附功能多孔二氧化矽/聚乙烯醇複合薄膜機械與磨耗性質研究. 2024.
    28. Interim LCA and LCCA report based upon technology selection and modelled processes European Union’s Horizon, 2019.
    29. 王督毅. 透過多元接枝填料強化聚甲基丙烯酸甲酯之機械、磨耗及光學性能與其應用. 2025.
    30. 宏英工業有限公司. 20-041塑膠舖面材第1.0版; 2021.
    31. 尤顥. 天然纖維門板之改良及應用開發. 2025.
    32. 薛銘豪. 玉米殼生物質與殼聚醣黏膠製備生物基複合材料. 2024.
    33. 明春窯業股份有限公司. 20-016+木竹製板材第3.0版; 2020.
    34. 南亞塑膠工業股份有限公司. 23-016塑膠製門、窗(含帷幕)PCR第1.0版; 2024.
    35. Mansfield, S.D.; Mooney, C.; Saddler, J.N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology progress 1999, 15, 804-816.
    36. Leschine, S.B. Cellulose degradation in anaerobic environments. Annual review of microbiology 1995, 49, 399-426.
    37. Liu, X.; Du, M.; Lu, Q.; He, D.; Song, K.; Yang, Q.; Duan, A.; Wang, D. How does chitosan affect methane production in anaerobic digestion? Environmental Science & Technology 2021, 55, 15843-15852.
    38. Imam, S.H.; Gordon, S.H. Biodegradation of coproducts from industrially processed corn in a compost environment. Journal of Polymers and the Environment 2002, 10, 147-154.
    39. 環境部-產品碳足跡資訊網-碳足跡資料庫.
    40. Citric acid, Europe. E330.
    41. Slater, C.S.; Savelski, M.J.; Hitchcock, D.; Cavanagh, E.J. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources. Journal of Environmental Science and Health, Part A 2016, 51, 487-494.
    42. Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Science of the Total Environment 2021, 770, 144656.
    43. The Surprising Truth about PVA (Polyvinyl Alcohol) Plastic and Its Impact on the Environment. Available online: https://jieyatwinscrew.com/blog/is-polyvinyl-alcohol-plastic/ (accessed on
    44. LCA for Acetone and IPA peer reviewed and published in Nature Biotechnology.
    45. 倪禮豐. 稻殼再利用技術. 花蓮區農業專訊61期 2007.
    46. Prasetiawan, H.; Fardhyanti, D.; Fatriasari, W.; Chafidz, A.; Rakasiwi, A.; Kaja, Y.; Rahma, N.; Laili, I. Bio Oil Production from Multi-Feed Stock Biomass Waste and The Upgrading Process for Quality Improvement-Mini Review. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2023; p. 012040.
    47. 112年度電力排碳係數. Available online: https://www.moeaea.gov.tw/ecw/populace/content/ContentDesc.aspx?menu_id=26391 (accessed on
    48. Nguyen, T.T.; Putro, W.S.; Hamura, S.; Nakashige, M.; Choi, J.-C.; Fukaya, N.; Taniguchi, S.; Yamaki, T.; Hara, N.; Kataoka, S. Comparative techno-economic and environmental analysis of a new CO2 to diethyl carbonate production process. Journal of Cleaner Production 2023, 389, 136046.
    49. Ammonia (NH3).
    50. Rispoli, A.L.; Tizzano, C.; Verdone, N.; Segneri, V.; Vilardi, G. Sustainable production of hydrogen, pyridine and biodiesel from waste-to-chemicals valorization plant: Energy, exergy and CO2-cycle analysis. Journal of Cleaner Production 2023, 425, 139051.
    51. Kane, S.; Miller, S.A.; Kurtis, K.E.; Youngblood, J.P.; Landis, E.N.; Weiss, W.J. Harmonized life-cycle inventories of nanocellulose and its application in composites. Environmental Science & Technology 2023, 57, 19137-19147.
    52. Yao, M.; Bi, X.; Wang, Z.; Yu, P.; Dufresne, A.; Jiang, C. Recent advances in lignin-based carbon materials and their applications: A review. International Journal of Biological Macromolecules 2022, 223, 980-1014.
    53. Gupta, V.; Carrott, P.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresource technology 2016, 216, 1066-1076.
    54. 112年度每度用水排放CO2約當量. Available online: https://www.water.gov.tw/dist5/Subject/Detail/2269?nodeId=6562 (accessed on
    55. Sodium hydroxide (NaOH). E524.
    56. Muñoz, I.; Rodríguez, C.; Gillet, D.; M Moerschbacher, B. Life cycle assessment of chitosan production in India and Europe. The International Journal of Life Cycle Assessment 2018, 23, 1151-1160.
    57. Al-Mitewty, M.; Yahya, A.; Razif, M.; Mat, N. Physical and mechanical properties of sweet corn plant. Agricultural Engineering International: CIGR Journal 2019, 21, 152-160.
    58. Lekene, R.B.N.; Ankoro, N.O.; Kouotou, D.; Yemeli, G.B.N.; Benedoue, S.A.; Nsami, J.N.; Mbadkam, J.K. High-quality low-cost activated carbon/chitosan biocomposite for effective removal of nitrate ions from aqueous solution: isotherm and kinetics studies. Biomass Conversion and Biorefinery 2024, 14, 20855-20872.
    59. Petraitis, D.; King, S.; Srnak, T. Method of Manufacturing Ethyleneamines. 2012.
    60. EFDB. CO2 Emission Factor for Ethylene Dichloride Production. 2006.
    61. Norton, C.W.S.a.D.G. Procedure of BiBB. 1953, doi:10.15227/orgsyn.033.0029.
    62. Product Carbon Footprints. Available online: https://2021.icl-group-sustainability.com/reports/carbonfootprints/ (accessed on
    63. Emission factors in kg CO2-equivalent per unit. Available online: https://www.winnipeg.ca/finance/findata/matmgt/documents/2012/682-2012/682-2012_appendix_h-wstp_south_end_plant_process_selection_report/appendix%207.pdf (accessed on
    64. Elvers, B. Ullmann's encyclopedia of industrial chemistry; Verlag Chemie Hoboken, NJ: 1991; Volume 17.
    65. Herrmann, W.A. Synthetic methods of organometallic and inorganic chemistry:(Herrmann/Brauer); Georg Thieme Verlag: 1996; Volume 5.
    66. John R. Ruhoff, R.E.B., and E. Emmet Reid. Hydrogen Bromide (Anhydrous). 1935, 15, p.35.
    67. Takahashi, H.; Yanai, N. Process for producing zein. 1996.
    68. Cornmeal, consumer package.

    無法下載圖示 校內:2030-08-22公開
    校外:2030-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE