| 研究生: |
翁薇恩 Weng, Wei-En |
|---|---|
| 論文名稱: |
探討LCL161在人類乳癌細胞株中的效果及其分子作用機轉 Evaluation of the potency and investigation of the molecular mechanism of actions of LCL161 in hu-man breast cancer cells |
| 指導教授: |
張雋曦
Cheung, Chun Hei Antonio |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 乳癌 、LCL161 、凋亡抑制蛋白 、自嗜作用 、細胞凋亡 |
| 外文關鍵詞: | Breast cancer, LCL161, IAPs, Autophagy, Apoptosis |
| 相關次數: | 點閱:174 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LCL161為小分子Smac/DIABLO類似藥具有抑制凋亡抑制蛋白的能力。儘管LCL161近年來已在不同癌症種類中進行臨床一期及二期的試驗,但其確切的分子作用機制仍然不明。此外,LCL161對於較難治癒的乳癌患者像是三重陰性乳癌及陽性雌激素受體-抗他莫西芬類乳癌是否可作為治療藥物目前也未知。因此本篇研究之目的為了解LCL161對於不同亞型乳癌的治療潛力及詳細作用機轉。
在本研究中,從顯微鏡觀察、MTT細胞存活測試、及LDH細胞毒性測試的分析中顯示,我們發現LCL161對於三陰性的MDA-MB-231、MDA-MB-453、管腔A型的MCF7、ZR-75-1、MCF7衍生出之陽性雌激素受體-抗他莫西芬之MCF7-TamC3、MCF-TamR7、MCF-TamR8乳癌細胞都會產生抗增生能力以及不同程度的毒殺能力。在分子層次,西方墨點法分析指出LCL161會在給藥24小時後減少MDA-MB-231, MCF7, MCF7-TamR7, ZR-75-1 and MDA-MB-453乳癌細胞中存活素及凋亡抑制蛋白的表現及增加LC3B-II 及 p62/STSQM1這兩個自嗜作用指標蛋白的表現。然而,在相同的給藥方法下LCL161會增加MDA-MB-231, ZR-75-1 and MDA-MB-453細胞中被切割的凋亡蛋白酶及多ADP 核糖聚合酶蛋白質這兩個內在路徑細胞凋亡指標蛋白的表現量,但這情形並不會出現在MCF7 及MCF7-TamR7中。此外,在MCF7 及MCF-TamR7 中LCL161與凋亡蛋白酶抑制劑Z-VAD-FMK合併使用無法衰減LCL161的作用效果。以上結果顯示LCL161在不同種類乳癌細胞中可能是經由非凋亡蛋白酶所造成的細胞凋亡路徑來引起細胞死亡。由螢光顯微鏡的觀察結果我們也發現LCL161會增加LCB斑點的數量及細胞中溶酶體的形成。除此之外LCL161會與自嗜作用抑制劑奎寧產生協同作用因此我們推論LCL161在乳癌細胞中可能是扮演一個自嗜作用抑制劑的角色。
綜合以上結果,我們的發現顯示LCL161在不同的乳癌細胞中有不同的作用效果。更進一步的研究目前正在進行為的是瞭解LCL161在不同種類乳癌細胞中更詳細的作用機轉,了解這些不同的作用機轉對於未來在特定種類的乳癌標靶藥物應用上可以提供重要的資訊。
LCL161 is a novel small molecule second mitochondrial activator of caspase (SMAC) mimetic that exhibits inhibitor-of-apoptosis proteins (IAPs) inhibitory effects. Despite LCL161 is currently undergoing various Phase I/II clinical trials in patients with different cancer types, its molecular mechanism of actions are still incompletely understood. Furthermore, it is still unclear on whether LCL161 is suitable for use in treating breast cancer patients with difficulty treated subtypes like the triple-negative breast cancer and the estrogen receptor-positive (ER+) hormone therapy resistance breast cancer. The aim of this study was to determine the potency and molecular mechanism of actions of LCL161 in various types of breast cancer cells including the ER+ hormone therapy-resistant breast cancer and the triple-negative metastatic aggressive breast cancer.
Results of the microscopic analysis, MTT cell viability assay and LDH cytotoxicity assay revealed that LCL161 exhibits differential anti-proliferative ef-fects and cytotoxicity in different breast cancer cells. At the molecular level, Western blot analysis revealed that LCL161 decreased the expression of survivin IAPs and increased the conversion of LC3B-II and p62/STSQM1, which is au-tophagy markers, in MDA-MB-231, MCF7, MCF7-TamR7, ZR-75-1 and MDA-MB-453 cells as early as 24 h post-treatment. The same treatment induced the cleavage of caspase-9, caspase-3 and PARP, which are the indicators of intrin-sic apoptosis, in MDA-MB-231, ZR-75-1 and MDA-MB-453 but not in MCF7 and MCF7-TamR7 cells. In addition, co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, could not attenuate the effect of LCL161 in MCF7 and MCF-TamR7 cells, suggesting that LCL161 promotes the death of different breast cancer cells through caspase-independent apoptosis. Moreover, LCL161 increased LC3B puncta and lysosome formation indicated that LCL161 enhance the number of au-tophagosomes in different breast cancer cells subtypes. Also, LCL161 might act as an autophagy inhibitor in breast cancer by having synergic effects with autophagy inhibitor CQ.
Taken together, our findings indicate that LCL161 induced differential cellular effects in different breast cancer subtypes. Further study is underway to get deeper understanding on the differential mechanism of actions of LCL161 in different breast cancer subtypes. Understanding the differential molecular mecha-nism of actions of LCL161 in different breast cancer cells may provide important information for using LCL161 as a therapeutic drug for patients with specific breast cancer subtypes in the future
Agarraberes, F. A., Terlecky, S. R., & Dice, J. F. (1997). An Intralysosomal hsp70 Is Required for a Selective Pathway of Lysosomal Protein Degradation. The Journal of Cell Biology, 137(4), 825-834.
Altieri, D. C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 22(53), 8581-8589.
Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., . . . Thompson, C. B. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. The Journal of Clinical Investigation, 117(2), 326-336.
Arnt, C. R., Chiorean, M. V., Heldebrant, M. P., Gores, G. J., & Kaufmann, S. H. (2002). Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. Journal of Biological Chemistry, 277(46), 44236-44243.
Bandyopadhyay, U., Kaushik, S., Varticovski, L., & Cuervo, A. M. (2008). The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol, 28(18), 5747-5763.
Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., . . . Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of Cell Biology, 171(4), 603.
Brands, R. C., Herbst, F., Hartmann, S., Seher, A., Linz, C., Kübler, A. C., & Müller-Richter, U. D. A. (2016). Cytotoxic effects of SMAC-mimetic compound LCL161 in head and neck cancer cell lines. Clinical oral investigations, 20(9), 2325-2332.
Carter, B. Z., Kornblau, S. M., Tsao, T., Wang, R. Y., Schober, W. D., Milella, M., . . . Andreeff, M. (2003). Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood, 102(12), 4179-4186.
Chai, J., Du, C., Wu, J.-W., Kyin, S., Wang, X., & Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 406(6798), 855-862.
Chesi, M., Mirza, N. N., Garbitt, V. M., Sharik, M. E., Dueck, A. C., Asmann, Y. W., . . . Bergsagel, P. L. (2016). IAP antagonists induce anti-tumor immunity in multiple myeloma. Nature Medicine, 22(12), 1411-1420.
Cleator, S., Heller, W., & Coombes, R. C. (2007). Triple-negative breast cancer: therapeutic options. The Lancet Oncology, 8(3), 235-244.
Deter, R. L., & de Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33(2), 437-449.
Eisen, A., Trudeau, M., Shelley, W., Messersmith, H., & Pritchard, K. I. (2008). Aromatase inhibitors in adjuvant therapy for hormone receptor positive breast cancer: a systematic review. Cancer Treatment Reviews, 34(2), 157-174.
Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic pathology, 35(4), 495-516.
Eskelinen, E.-L., Schmidt, C. K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., . . . Saftig, P. (2004). Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient Fibroblasts. Molecular Biology of the Cell, 15(7), 3132-3145.
Fabian, C. J. (2007). The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. International Journal of Clinical Practice, 61(12), 2051-2063.
Fesik, S. W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nature Reviews Cancer, 5(11), 876-885.
Finlay, D., Teriete, P., Vamos, M., Cosford, N. D. P., & Vuori, K. (2017). Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Research, 6, 587.
Florea, A.-M., & Büsselberg, D. (2013). Breast cancer and possible mechanisms of therapy resistance. Journal of Local and Global Health Science(2013), 2.
Fukuda, S., & Pelus, L. M. (2006). Survivin, a cancer target with an emerging role in normal adult tissues. Molecular Cancer Therapeutics, 5(5), 1087.
Fulda, S., Wick, W., Weller, M., & Debatin, K. M. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Medicine, 8(8), 808-815.
Fullgrabe, J., Lynch-Day, M. A., Heldring, N., Li, W., Struijk, R. B., Ma, Q., . . . Joseph, B. (2013). The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature, 500(7463), 468-471.
González-Polo, R.-A., Boya, P., Pauleau, A.-L., Jalil, A., Larochette, N., Souquère, S., . . . Kroemer, G. (2005). The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. Journal of Cell Science, 118(14), 3091.
He, C., & Klionsky, D. J. (2009). Regulation Mechanisms and Signaling Pathways of Autophagy. Annual review of genetics, 43, 67-93.
Hu, S., & Yang, X. (2003). Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. Journal of Biological Chemistry, 278(12), 10055-10060.
Infante, J. R., Dees, E. C., Burris, H. A., Zawel, L., Sager, J. A., Stevenson, C., . . . Cohen, R. B. (2014). Abstract 2775: A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. Cancer Research, 70(8 Supplement), 2775.
Jordan, V. C. (2006). Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. British Journal of Pharmacology, 147(Suppl 1), S269-S276.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., . . . Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720.
Kasibhatla, S., & Tseng, B. (2003). Why Target Apoptosis in Cancer Treatment? Molecular Cancer Therapeutics, 2(6), 573.
Kimura, S., Fujita, N., Noda, T., & Yoshimori, T. (2009). Chapter 1 Monitoring Autophagy in Mammalian Cultured Cells through the Dynamics of LC3. 452, 1-12.
Laukens, B., Jennewein, C., Schenk, B., Vanlangenakker, N., Schier, A., Cristofanon, S., . . . Fulda, S. (2011). Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis. Neoplasia, 13(10), 971-IN929.
Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750-2767.
Leung, E., Kannan, N., Krissansen, G. W., Findlay, M. P., & Baguley, B. C. (2010). MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biology & Therapy, 9(9), 717-724.
Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cell Mol Life Science, 69(7), 1125-1136.
Liu, L., Zhang, N., Dou, Y., Mao, G., Bi, C., Pang, W., . . . Deng, H. (2017). Lysosomal dysfunction and autophagy blockade contribute to IMB-6G-induced apoptosis in pancreatic cancer cells. Scientific Reports, 7, 41862.
Lopez, J., John, Sidonie W., Tenev, T., Rautureau, Gilles J. P., Hinds, Mark G., Francalanci, F., . . . Meier, P. (2011). CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration. Molecular Cell, 42(5), 569-583.
Loreto, C., La Rocca, G., Anzalone, R., Caltabiano, R., Vespasiani, G., Castorina, S., . . . Sansalone, S. (2014). The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie’s Disease. BioMed Research International, 2014, 1-10.
Lowe, S. W., & Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21(3), 485-495.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., . . . Kroemer, G. (2007). Functional and physical interaction between Bcl‐X<sub>L</sub> and a BH3‐like domain in Beclin‐1. The EMBO Journal, 26(10), 2527.
Martinez-Ruiz, G., Maldonado, V., Ceballos-Cancino, G., Grajeda, J. P. R., & Melendez-Zajgla, J. (2008). Role of Smac/DIABLO in cancer progression. Journal of Experimental & Clinical Cancer Research : CR, 27(1), 48-48.
Maruyama, Y., Sou, Y.-S., Kageyama, S., Takahashi, T., Ueno, T., Tanaka, K., . . . Ichimura, Y. (2014). LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and Biophysical Research Communications, 446(1), 309-315.
Melendez, A., & Levine, B. (2009). Autophagy in C. elegans. WormBook, 1-26.
Miyake, K., Bekisz, J., Zhao, T., Clark, C. R., & Zoon, K. C. (2012). Apoptosis-inducing factor (AIF) is targeted in IFN-alpha2a-induced Bid-mediated apoptosis through Bak activation in ovarian cancer cells. Biochimica et Biophysica Acta, 1823(8), 1378-1388.
Mizushima, N. (2005). The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ, 12(S2), 1535-1541.
Mizushima, N. (2007). Autophagy: process and function. Genes & Development, 21(22), 2861-2873.
Mourits, M. J. E., De Vries, E. G. E., Willemse, P. H. B., Ten Hoor, K. A., Hollema, H., & Van der Zee, A. G. J. (2001). Tamoxifen treatment and gynecologic side effects: a review. Obstetrics & Gynecology, 97(5), 855-866.
Mukhtar, T. K., Yeates, D. R. G., & Goldacre, M. J. (2013). Breast cancer mortality trends in England and the assessment of the effectiveness of mammography screening: population-based study. Journal of the Royal Society of Medicine, 106(6), 234-242.
Nachmias, B., Ashhab, Y., & Ben-Yehuda, D. (2004). The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Seminars in Cancer Biology, 14(4), 231-243.
Nahta, R., & Esteva, F. J. (2006). HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res, 8(6), 215.
Nakamura, O., Hitora, T., Yamagami, Y., Mori, M., Nishimura, H., Horie, R., . . . Yamamoto, T. (2014). The combination of rapamycin and MAPK inhibitors enhances the growth inhibitory effect on Nara-H cells. International Journal of Molecular Medicine, 33(6), 1491-1497.
Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology, 10(7), 458-467.
Norberg, E., Orrenius, S., & Zhivotovsky, B. (2010). Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochemical and Biophysical Research Communications, 396(1), 95-100.
Oberoi-Khanuja, T. K., Murali, A., & Rajalingam, K. (2013). IAPs on the move: role of inhibitors of apoptosis proteins in cell migration. Cell Death & Disease, 4, e784.
Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nature Reviews Molecular Cell Biology, 2(3), 211-216.
Osborne, C. K. (1998). Tamoxifen in the Treatment of Breast Cancer. New England Journal of Medicine, 339(22), 1609-1618.
Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., Outzen, H., . . . Johansen, T. (2007). p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. Journal of Biological Chemistry, 282(33), 24131-24145.
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., . . . Levine, B. (2005). Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell, 122(6), 927-939.
Pellegrini, C., Columbaro, M., Capanni, C., D'Apice, M. R., Cavallo, C., Murdocca, M., . . . Squarzoni, S. (2015). All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget, 6(30), 29914-29928.
Penninger, J. M., & Kroemer, G. (2003). Mitochondria, AIF and caspases [mdash] rivaling for cell death execution. Nature Cell Biology, 5(2), 97-99.
Rao, R., Balusu, R., Fiskus, W., Mudunuru, U., Venkannagari, S., Chauhan, L., . . . Bhalla, K. N. (2012). Combination of Pan-Histone Deacetylase Inhibitor and Autophagy Inhibitor Exerts Superior Efficacy against Triple-Negative Human Breast Cancer Cells. Molecular Cancer Therapeutics, 11(4), 973.
Rastelli, F., & Crispino, S. (2008). Factors predictive of response to hormone therapy in breast cancer. Tumori Journal, 94(3), 370-383.
Ribe, Elena M., Serrano-Saiz, E., Akpan, N., & Troy, Carol M. (2008). Mechanisms of neuronal death in disease: defining the models and the players. Biochemical Journal, 415(2), 165.
Riggins, R. B., Schrecengost, R. S., Guerrero, M. S., & Bouton, A. H. (2007). Pathways to Tamoxifen Resistance. Cancer letters, 256(1), 1-24.
Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature reviews. Drug discovery, 11(9), 709-730.
Shekhar, T. M., Miles, M. A., Gupte, A., Taylor, S., Tascone, B., Walkley, C. R., & Hawkins, C. J. (2016). IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget, 7(23), 33866-33886.
Shin, S., Sung, B.-J., Cho, Y.-S., Kim, H.-J., Ha, N.-C., Hwang, J.-I., . . . Oh, B.-H. (2001). An Anti-apoptotic Protein Human Survivin Is a Direct Inhibitor of Caspase-3 and -7. Biochemistry, 40(4), 1117-1123.
Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: Cancer Journal for Clinicians, 66(1), 7-30.
Srinivasula, S. M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J., . . . Alnemri, E. S. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 410(6824), 112-116.
Tang, Z., Lin, M. G., Stowe, T. R., Chen, S., Zhu, M., Stearns, T., . . . Zhong, Q. (2013). Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature, 502(7470), 254-257.
Tian, A., Wilson, G. S., Lie, S., Wu, G., Hu, Z., Hebbard, L., . . . Qiao, L. (2014). Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells. Cancer Letter, 351(2), 232-241.
Todde, V., Veenhuis, M., & van der Klei, I. J. (2009). Autophagy: Principles and significance in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1792(1), 3-13.
Valabrega, G., Montemurro, F., & Aglietta, M. (2007). Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Annals of Oncology, 18(6), 977-984.
Verhagen, A. M., Coulson, E. J., & Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biology, 2(7), reviews3009.3001-reviews3009.3010.
Vucic, D., & Fairbrother, W. J. (2007). The Inhibitor of Apoptosis Proteins as Therapeutic Targets in Cancer. Clinical Cancer Research, 13, 5995-6000.
Wang, Q., Chen, Z., Diao, X., & Huang, S. (2011). Induction of autophagy-dependent apoptosis by the survivin suppressant YM155 in prostate cancer cells. Cancer letters, 302(1), 29-36.
Wang, Z., Zhang, J., Wang, Y., Xing, R., Yi, C., Zhu, H., . . . Liu, S. (2013). Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis, 34(1), 128-138.
Wei, Y., Fan, T., & Yu, M. (2008). Inhibitor of apoptosis proteins and apoptosis. Acta Biochimica et Biophysica Sinica, 40(4), 278-288.
Weigelt, B., Peterse, J. L., & van't Veer, L. J. (2005). Breast cancer metastasis: markers and models. Nature Reviews Cancer, 5(8), 591-602.
Weisberg, E., Ray, A., Barrett, R., Nelson, E., Christie, A. L., Porter, D., . . . Griffin, J. D. (2010). Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia, 24(12), 2100-2109.
Wirth, M., Joachim, J., & Tooze, S. A. (2013). Autophagosome formation—The role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Seminars in Cancer Biology, 23(5), 301-309.
Wu, W., Liu, P., & Li, J. (2012). Necroptosis: An emerging form of programmed cell death. Critical Reviews in Oncology/Hematology, 82(3), 249-258.
Yang, Q. H., & Du, C. (2004). Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. Journal of Biological Chemistry, 279(17), 16963-16970.
Yang, Z., & Klionsky, D. J. (2010). Eaten alive: a history of macroautophagy. Nature cell biology, 12(9), 814-822.
Yang, Z. J., Chee, C. E., Huang, S., & Sinicrope, F. A. (2011). The Role of Autophagy in Cancer: Therapeutic Implications. Molecular Cancer Therapeutics, 10(9), 1533.
Zhang, Y., Zhu, J., Tang, Y., Li, F., Zhou, H., Peng, B., . . . Fu, R. (2011). X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma. Diagnostic Pathology, 6, 49.
Zhou, F., Yang, Y., & Xing, D. (2011). Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS Journal, 278(3), 403-413.
Zobel, K., Wang, L., Varfolomeev, E., Franklin, M. C., Elliott, L. O., Wallweber, H. J. A., . . . Deshayes, K. (2006). Design, Synthesis, and Biological Activity of a Potent Smac Mimetic That Sensitizes Cancer Cells to Apoptosis by Antagonizing IAPs. ACS Chemical Biology, 1(8), 525-533.
校內:2020-07-10公開