研究生: |
李采靚 Li, Tsai-Ching |
---|---|
論文名稱: |
合成硫化銅-奈米金顆粒於氧化鋅奈米柱及奈米牆之複合結構以應用於全日活性催化降解有機染料之研究 Study of CuS@Au nanoparticles on ZnO nanorods and nanowalls for all-day active degradation of organic dyes |
指導教授: |
陳嘉勻
Chen, Chia-Yun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 硫化銅 、複合結構 、暗降解 |
外文關鍵詞: | copper sulfide, dark catalyst, carrier utilization |
相關次數: | 點閱:124 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光催化降解染料為近年來熱門的研究主題之一,近年來透過研發新材料以及合成不同的複合結構來改善光生載子複合率高以及增強對於可見光波長光源的吸收率,而本研究除了改善材料對可見光波段光吸收外,另外也利用材料本身特性達到可進行暗降解反應;實驗合成之複合結構為將硫化銅合成於氧化鋅-奈米金之複合結構上;可知硫化銅本身為低能隙且本身可在不照光的情況下催化過氧化氫產生高能自由基在這裡稱其為暗降解,但由於單一材料容易有光生載子複合率高,或是合成時奈米顆粒容易團聚之現象,因此將硫化銅合成於氧化鋅-奈米金之複合結構上,且成長於基板之光觸媒也具有易回收之優勢。實驗之光觸媒主體氧化鋅以兩種不同材料為基板,成長結構為奈米牆與奈米柱;在經由硫化製程時間調整以及改變前驅物濃度後找到最佳硫化參數,由最佳參數之結果顯示複合結構後氧化鋅奈米牆之全日催化降解中之光降解反應速率常數k值由0.0027(min-1)提升至0.0081(min-1),而其暗降解k值則是由非常低的0.0008(min-1)提升至0.006(min-1);而氧化鋅奈米柱由全日催化降解中暗降解反應速率常數k值0.0013(min-1)提升至0.017(min-1);並且透過動力學將樣品之暗降解分析,可發現氧化鋅奈米牆在暗降解反應中幾乎無法作用且其降解結果代入動力模型之相關係數極低,也驗證了硫化銅的暗降解特性。
Metal oxide semiconductor nanomaterials have been extensively studied for photocatalytic water treatment. To enhance their photocatalytic performance, different synthetic methods of heterogeneous photocatalysts have been developed for improving energy harvesting of solar light and carrier utilization nowadays. In this study, we used different substrates to synthesize zinc oxide nanorods and nanowalls. Then, combing zinc oxide, gold nanoparticle, and copper sulfide nanomaterial by photochemical reduction and simple chemical reduction method. After that, adjusting two kinds of parameters with sulfidation time and the concentration of precursor solution, cupper (Ⅱ) sulfide, for modifying copper sulfide nanoparticles and enhancing the reaction rate of photodegradation. After increasing the concentration of precursor, cupper (Ⅱ) sulfate, the copper (Ⅱ) sulfide nanoparticles synthesized on ZnO-Au or ZnO would transform to copper (Ⅰ) sulfide nanoparticles which own suitable band alignment with ZnO-Au and ZnO and lead to decreasing the carrier recombination rate. Moreover, the dark catalytic experiments were implemented by adding hydrogen peroxide which would induce the formation of photocatalytic active hydroxyl radicals by copper sulfide without light irradiation. Pseudo-first-order kinetic model were employed to quantify the photocatalytic activity and the rate constant increased from 0.0027 (min-1) to 0.0081 (min-1) in the photodegradation experiment, and 0.0008 (min-1) to 0.006 (min-1) in the dark degradation experiment of zinc oxide nanowalls and ZnO-Au@CuXS. The results also proved that the decoration of copper sulfide nanoparticles can modify zinc oxide effectively on both photocatalytic and dark catalytic reactions that could be applied for all-day active catalyst.
[1] 司洪濤,呂冠霖,黃香玫, "高級氧化技術在高濃度COD廢水處理之應用.pdf,"
[2] T. Bak, J. Nowotny, M. Rekas, and C. J. I. j. o. h. e. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," vol. 27, no. 10, pp. 991-1022, 2002.
[3] 曾心如, "以水熱法在異質基板上成長氧化鋅之研究," 43, Environ. Sci. Technol., 2009.
[4] A. Kudo and Y. J. C. S. R. Miseki, "Heterogeneous photocatalyst materials for water splitting," vol. 38, no. 1, pp. 253-278, 2009.
[5] S. Y. Lee, S. J. Park, and E. Chemistry, "TiO2 photocatalyst for water treatment applications," vol. 19, no. 6, pp. 1761-1769, 2013.
[6] M. Y. Kuo et al., "Au@ Cu2O core@ shell nanocrystals as dual-functional catalysts for sustainable environmental applications," vol. 242, pp. 499-506, 2019.
[7] M. N. Chong, B. Jin, C. W. Chow, and C. J. W. r. Saint, "Recent developments in photocatalytic water treatment technology: a review," vol. 44, no. 10, pp. 2997-3027, 2010.
[8] H. L. Tan, R. Amal, and Y. H. J. J. o. M. C. A. Ng, "Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO 4: a review," vol. 5, no. 32, pp. 16498-16521, 2017.
[9] A. Fujishima and K. J. n. Honda, "Electrochemical photolysis of water at a semiconductor electrode," vol. 238, no. 5358, pp. 37-38, 1972.
[10] H. Ahmad, S. Kamarudin, L. Minggu, M. J. R. Kassim, and S. E. Reviews, "Hydrogen from photo-catalytic water splitting process: A review," vol. 43, pp. 599-610, 2015.
[11] K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. J. W. r. Juan, "Recent developments of zinc oxide based photocatalyst in water treatment technology: a review," vol. 88, pp. 428-448, 2016.
[12] X. Li et al., "Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism," vol. 46, no. 10, pp. 5528-5534, 2012.
[13] S. B. A. Hamid, S. J. Teh, and C. W. J. C. Lai, "Photocatalytic water oxidation on ZnO: a review," vol. 7, no. 3, p. 93, 2017.
[14] A. J. Nozik and R. J. T. J. o. P. C. Memming, "Physical chemistry of semiconductor− liquid interfaces," vol. 100, no. 31, pp. 13061-13078, 1996.
[15] M. G. Walter et al., "Solar water splitting cells," vol. 110, no. 11, pp. 6446-6473, 2010.
[16] C. Y. Chu and M. H. J. J. o. m. c. A. Huang, "Facet-dependent photocatalytic properties of Cu 2 O crystals probed by using electron, hole and radical scavengers," vol. 5, no. 29, pp. 15116-15123, 2017.
[17] 張逸群, "PdO/TiO2 半導體氧化物異質接合結構之有機分子光催化分解研究 .pdf," 2000.
[18] J. L. G. Fierro, Metal oxides: chemistry and applications. CRC press, 2005.
[19] A. Moezzi, A. M. McDonagh, and M. B. Cortie, "Zinc oxide particles: Synthesis, properties and applications," Chem. Eng. J., vol. 185–186, p. 1, 2012.
[20] Y. B. Hahn, "Zinc oxide nanostructures and their applications," Korean Journal of Chemical Engineering, vol. 28, no. 9, p. 1797, 2011/09/03 2011.
[21] K. Tam et al., "Defects in ZnO nanorods prepared by a hydrothermal method," vol. 110, no. 42, pp. 20865-20871, 2006.
[22] T. Liu, W. Chen, Y. Hua, and X. Liu, "Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light," Applied Surface Science, vol. 392, pp. 616-623, 2017/01/15/ 2017.
[23] N. Modirshahla, A. Hassani, M. A. Behnajady, and R. Rahbarfam, "Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts," Desalination, vol. 271, p. 187, 2011.
[24] P. She, K. Xu, S. Zeng, Q. He, H. Sun, and Z. Liu, "Investigating the size effect of Au nanospheres on the photocatalytic activity of Au-modified ZnO nanorods," Journal of Colloid and Interface Science, vol. 499, pp. 76-82, 2017/08/01/ 2017.
[25] B. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi, "Enhanced photocatalytic performance of WO3 loaded Ag–ZnO for Acid Black 1 degradation by UV-A light," J. Mol. Catal. A: Chem., vol. 366, p. 54, 2013.
[26] S. Sun, S. Wang, D. Deng, and Z. J. N. J. o. C. Yang, "Formation of hierarchically polyhedral Cu 7 S 4 cages from Cu 2 O templates and their structure-dependent photocatalytic performances," vol. 37, no. 11, pp. 3679-3684, 2013.
[27] L. Isac, C. Cazan, E. Alexandru, and L. J. F. i. c. Andronic, "Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation," vol. 7, p. 694, 2019.
[28] S. Riyaz, A. Parveen, and A. J. P. i. S. Azam, "Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route," vol. 8, pp. 632-635, 2016.
[29] S. Jiao, L. Xu, K. Jiang, and D. J. A. M. Xu, "Well‐defined non‐spherical copper sulfide mesocages with single‐crystalline shells by shape‐controlled Cu2O crystal templating," vol. 18, no. 9, pp. 1174-1177, 2006.
[30] A. Tang et al., "One-pot synthesis and self-assembly of colloidal copper (I) sulfide nanocrystals," vol. 21, no. 28, p. 285602, 2010.
[31] S. Sun, D. Deng, X. Song, and Z. J. P. C. C. P. Yang, "Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages," vol. 15, no. 38, pp. 15964-15970, 2013.
[32] S. Yamabi and H. J. J. o. m. c. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions," vol. 12, no. 12, pp. 3773-3778, 2002.
[33] Y. H. Chiu and Y.-J. J. N. E. Hsu, "Au@ Cu7S4 yolk@ shell nanocrystal-decorated TiO2 nanowires as an all-day-active photocatalyst for environmental purification," vol. 31, pp. 286-295, 2017.
[34] Y. K. Lin, Y. J. Chiang, Y. J. J. S. Hsu, and A. B. Chemical, "Metal–Cu2O core–shell nanocrystals for gas sensing applications: Effect of metal composition," vol. 204, pp. 190-196, 2014.
[35] G. Chen, M. Niu, L. Cui, F. Bao, L. Zhou, and Y. J. T. J. o. P. C. C. Wang, "Facile synthesis and formation mechanism of metal chalcogenides hollow nanoparticles," vol. 113, no. 18, pp. 7522-7525, 2009.
[36] T. M. Elmorsi, M. H. Elsayed, and M. F. J. C. J. o. C. Bakr, "Enhancing the removal of methylene blue by modified ZnO nanoparticles: kinetics and equilibrium studies," vol. 95, no. 5, pp. 590-600, 2017.
[37] X. Zhang et al., "Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods," vol. 4, p. 4596, 2014.
[38] 曾賢德, "金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作," Water Res., vol. 40, p. 1119, 2006.
[39] J. F. Tang, H. H. Su, Y. M. Lu, and S. Y. J. C. Chu, "Controlled growth of ZnO nanoflowers on nanowall and nanorod networks via a hydrothermal method," vol. 17, no. 3, pp. 592-597, 2015.
[40] S. Bayan, B. Satpati, P. J. S. Chakraborty, and I. Analysis, "ZnS nanoparticle decorated ZnO nanowall network: investigation through electron microscopy and secondary ion mass spectrometry," vol. 47, no. 1, pp. 37-44, 2015.
[41] K. Wenderich and G. J. C. r. Mul, "Methods, mechanism, and applications of photodeposition in photocatalysis: a review," vol. 116, no. 23, pp. 14587-14619, 2016.
[42] J. J. Wu and C. H. Tseng, "Photocatalytic properties of nc-Au/ZnO nanorod composites," Applied Catalysis B: Environmental, vol. 66, no. 1, pp. 51-57, 2006/06/20/ 2006.
[43] L. Sun et al., "Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity," vol. 363, no. 1, pp. 175-181, 2011.
[44] R. Ji, W. Sun, and Y. J. R. A. Chu, "One-step hydrothermal synthesis of Ag/Cu 2 O heterogeneous nanostructures over Cu foil and their SERS applications," vol. 4, no. 12, pp. 6055-6059, 2014.
[45] S. Gandla, S. R. Gollu, R. Sharma, V. Sarangi, and D. J. A. P. L. Gupta, "Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors," vol. 107, no. 15, p. 152102, 2015.
[46] A. Kushwaha and M. J. J. o. P. D. A. P. Aslam, "Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity," vol. 46, no. 48, p. 485104, 2013.
[47] B. H. Kim and J. W. J. S. r. Kwon, "Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates," vol. 4, p. 4379, 2014.