| 研究生: |
黃榮吉 Huang, Rong-Ji |
|---|---|
| 論文名稱: |
應用資料探勘與本體論之半導體設備遠端診斷系統之開發 Development of an e-Diagnostics System for Semiconductor Equipment Using Data Mining and Ontology |
| 指導教授: |
洪敏雄
Hung, Min-Hsiung 鄭芳田 Cheng, Fan-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 網路服務 、本體論 、資料探勘 |
| 外文關鍵詞: | Web-Services, Ontology, e-Diagnostics |
| 相關次數: | 點閱:110 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用資料探勘 (Data Mining)、本體論 (Ontology) 及網路服務 (Web-Services) 等技術發展了一套半導體設備遠端診斷系統 (Remote Diagnostics System),以期縮短機台設備錯誤診斷及故障排除的時間。首先,我們設計了一個資料探勘系統,以對設備商端(Supplier Side)使用者回覆的所有診斷修復資訊進行探勘,進而建立一個診斷解答資料庫(Diagnostics-Solutions Database),如此,系統即可根據客戶端送來的機台錯誤描述資訊,快速地找出相對應的診斷解答。其次,我們利用Ontology、OIL (Ontology Inference Layer)及RDF(Resource Description Language)等技術來建立機台設備的診斷知識模型,並利用XML-binding技術建立了診斷知識資料庫(Diagnostics Knowledge Database),藉此,系統可以根據機台的錯誤描述資料,找出與此錯誤相關的所有診斷資訊。接著,我們整合上述兩個系統,建立一個診斷解決方法的擷取系統 (Diagnostics-Solutions Retrieval System, DSRS),並使用網路服務 (Web-Services)等分散式物件技術,來提供工廠端(Factory Side)顧客使用此一系統之服務。最後,我們建構一個電子診斷應用實例,以進行系統的整合與測試,並驗證本遠端診斷系統之效能。
In this thesis, we use Data Mining, Ontology, and Web-services technologies to develop a remote diagnostics system for semiconductor equipment. The proposed diagnostics system is invented to effectively shorten the diagnosis and error-recovery time of equipment. First, a data-mining system is designed to mine the diagnostics-solutions data that are replied to and stored at the supplier site by factory clients so as to create a diagnostics-solutions database. The data-mining system can quickly reply the associated diagnostics solutions as it receives fault descriptions from the client. Next, we use Ontology, OIL (Ontology Inference Layer), and RDF (Resource Description Language) technologies to construct a diagnostics knowledge model for semiconductor equipment. Accordingly, a diagnostics knowledge database is created using the XML-binding technique. Given a specific fault description, the Ontology system can provide all of the relative diagnostics solutions. Then, we combine the data-mining system and the Ontology system to form a diagnostics-solutions retrieval system, called DSRS, which can provide diagnostics solutions to factory clients through Web-services technologies. Finally, we construct an application paradigm of e-diagnostics and develop the associated procedures of system integration and testing to evaluate the effectiveness of the proposed remote diagnostics system.
[1] SEMI (Semiconductor Equipment and Material International)
http://www.semi.org
[2] “International SEMETECH e-Diagnostics Program,” SEMATECH.
http://www.sematech.org
[3] “International SEMETECH e-Diagnostics Guidebook ver. 1.1,” SEMATECH, Dec. 2001.
http://www.sematech.org
[4] JEITA (Japan Electronics and Information Technology Industries Association) http://www.jeita.or.jp
[5] SELETE (Semiconductor Leading Edge Technologies)
http://www.selete.co.jp/
[6] http://www.aaai.org/
[7] http://www.datamining.org.tw
[8] Novellus Systems (semiconductor manufacturing equipment)
http://www.novellus.com/index.htm
[9] P. Jackson, Introduction to Expert Systems, Addison Wesley, 1999.
[10] B. -C. Liu, A Web Based Remote Expert System on Fault Diagnosis and the Maintenance Work, Master thesis, Yuan Ze University, Taoyuan, Taiwan, R.O.C., 1998.
[11] J. Melendez, J. Colomer, and J. L. Rosa, ”Expert Supervision Based on Cases,” in the 8th IEEE International Conference on Emerging Technology and Factory Automation, vol. 1, pp. 431-440, 2001.
[12] K. L. Butler, ”An Expert System Based Framework for an Incipient Failure Detection and Predictive Maintenance System,” IEEE International Conference on Intelligent Systems Applications to Power Systems (ISAP ’96), pp. 321-326, Feb. 1996.
[13] H. Simon, Neural Networks: A Comprehensive Foundation, 2rd Edition, Prentice-Hall International, Inc., 1999.
[14] A. C. M. Fong and S. C. Hui, “An Intelligent Online Machine Fault Diagnosis System,” Computing & Control Engineering Journal, vol. 12, issue 5, pp. 217-223, Oct. 2001.
[15] W. G. Fenton, T. M. Mcginnity, and L. P. Maguire, “Fault Diagnosis of Electronic Systems Using Intelligent Techniques: a Review,” IEEE Transactions, vol. 31, issue 3, pp. 269 –281, Aug. 2001.
[16] Z. S. Saleh, O. Oluwole, and W. R. Hwang, “An Intelligent Neuro-System for Failure Detection and Accommodation,” in Proc. 1996, IEEE Int. Conf. on Science and Technology, pp. 512-516, April, 1996.
[17] H.-W. Hsiao, Supporting Mechanism of Manufacturing Knowledge, Master thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2001.
[18] P. C. Benjamin, C. P. Menzel, R. J. Mayer, and N. Padmanaban, “Toward a Method for Acquiring CIM Ontologies,” International Journal of Computer Integrated Manufacturing, vol. 8, no. 3, pp. 225-234, 1995.
[19] http://www.ontology.org
[20] “Semantic Web Activity: Resource Description Framework (RDF),” W3C. http://www.w3.org/RDF/
[21] N. Michael and P. Munindar, “Ontologies for Agents,” IEEE Internet Computing, vol. 1, issue 6, pp. 81-83, Nov.-Dec. 1997.
[22] M. R. Lee, “Context-Dependent Semantic Values for E-negotiation,” WECWIS Second International Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems, pp. 41-47, 2000.
[23] J. Hendler and J. Heflin, “A Portrait of the Semantic Web in Action,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 54-59, 2001.
[24] D. Fensel, F. Van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider, “OIL: An Ontology Infrastructure for the Semantic Web, ” IEEE Intelligent Systems, vol. 16, no. 2, pp. 38-44, 2001.
[25] S. A. McIlraith, S. T. Cao, and Z. Honglei, “ Semantic Web Services,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53, 2001.
[26] S.-C. Yeh, “Development of a Web-Services-based Information Integration Framework for e-Diagnostics,” Master thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2002.
[27] Sun Microsoftsystems. http://java.sun.com
[28] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001.
[29] R. Kittler and W. Wang, The Emerging Role For Data Mining, Yield Dynamics, Inc., Nov. 1999.
[30] V. Lohmann, O. Preiss, “LESS IMPACT OF POWER FAILURES DUE TO SUBSTATION AUTOMATION”, in Proc. 1999 CIRED 15th Int. Conf. on Electricity Distribution, Topic 3, June, 1999.
[31] http://www.microsoft.com
[32] T. Gruber, “What is an Ontology?” http://www-ksl.stanford.edu/kst
[33] http://www.ontoknowledge.org/oil/index.shtml
[34] “XOL Ontology Exchange Language,” http://www.ai.sri.com/pkarp/xol/
[35] “Extensible Markup Language (XML),” W3C.
http://www.w3c.org/XML/
[36] “XML in 10 points,” W3C.
http://www.w3.org/XML/1999/XML-in-10-points.html
[37] “XML Schema,” W3C. http://www.w3.org/XML/Schema
[38] 陳長念, 陳勤意, “活用XML,” 知城數位, 2001
[39] R. Mark, “An XML Data-Binding Facility for the Java Platform,” Sun Microsystems, Inc., 1999.
[40] R. Orfali, D. Harkey, and J. Edwards, The Essential Distributed Objects Survival Guide, New York: John Willy & Sons, 1996.
[41] H. Balen, Distributed Object Architectures with Corba, SIGS BOOKS, May 2000.
[42] C.-Y. Tsai, “Development of a Service-Management Scheme with Abnormal-Handling Capability”, Master thesis, National Cheng Kung Univerisity, Tainan, Taiwan, R.O.C., 2001.
[43] Java RMI. http://java.sun.com/jdk/rmi
[44] CORBA. http://www.corba.org
[45] DCOM. http://www.microsoft.com/com
[46] Web Services. http://www.microsoft.com/NET
[47] H. E. Eriksson and M. Penker, UML Toolkit, New York: John Willy & Sons, Inc., 1998.
[48] G. Booch, Object-Oriented Analysis and Design with Applications, Redwood City, CA: Benjamin Cummings, 1994.
[49] J. Rumbough, M. Blaha, W. Premerlani, F. Eddy, and F. Lorensen, Object-Oriented Modeling and Design, Englewood Cliffs, NJ: Prentice-Hall, 1991.
[50] I. Jacobson, M. Christerson, and G. Övergaard, Object-Oriented Software Engineering, Reding, NY: Addison-Wesley, 1992.
[51] D. Coleman, S. Bodoff, and P. Arnold, Object-Oriented Development: The Fusion Method, Prentice Hall, 1994.
[52] “OMG's 1997 Press Releases,” Object Management Group, 1997. http://www.omg.org/news/pr97.htm
[53] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic Itemset Counting and Implication Rule for Market Basket Analysis,” In Proc. 1997, ACM-SIGMOD Int. Conf. Management of Data, pp. 255-264, May 1997.
[54] J.-S. Park, M.-S. Chen, and P.-S. Yu, “Using a Hash-Based Method with Transaction Trimming for Mining Association Rules,” IEEE Transactions on Knowledge and Data Engineering, vol. 9, no.5, pp. 813-825, Sep.-Oct. 1997.
[55] S. Staab, R. Studer, H. P. Schnurr, and Y. Sure, “Knowledge Processes and Ontologies,” IEEE Intelligent Systems, vol. 16, issue 1, pp.26-34, Jan.-Feb. 2001.