研究生: |
歐承昌 Ou, Cheng-Chang |
---|---|
論文名稱: |
磷酸亞鐵鋰陰極材料的製備及其性質研究 Synthesis and Characterization of LiFePO4 Cathode Material |
指導教授: |
高振豐
Kao, Chen-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 陰極材料 、磷酸亞鐵鋰 、溶膠-凝膠法 |
外文關鍵詞: | cathode material, LiFePO4, sol-gel |
相關次數: | 點閱:80 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因鋰鐵磷酸鹽LiFePO4具有成本低、穩定度高等特性,且所含元素皆為環境友善,所以被當成熱門研究之鋰離子正極材料,但目前遇到最主要的問題為材料本身導電度太差,改善方法可分為兩部份:一為減小particle size 其中採用溶液法來合成鋰鐵磷酸(LiFePO4),本研究係以溶膠凝膠法(sol-gel method)製備LiFePO4二次鋰離子電池用正極材料,利用抗壞血酸做為還原劑;二為添加導電性物質,如碳源之類的有機物質或導電金屬,本研究係以果糖來添加,並以各種不同的熱處理溫度來找出最佳的合成條件。
磷酸鋰鐵粒徑隨著熱處理溫度升高而升高,本實驗發現熱處理溫度在500℃有較佳粒徑和在600℃有較低直流電阻抗。
由實驗結果發現而隨著燒結溫度增加 (500~700)℃,其結晶強度、粉體粒徑亦隨之增大。
再添加導電物質方面,添加果糖或抗壞血酸等碳源對導電度有明顯提升,而且對其粒徑縮小也有所幫助但是添加過多時對導電度的提升也是效果有限。
LiFePO4 has been actively investigated as cathode material for Li ion secondary batteries. LiFePO4 has attracted great interest due to its low cost , thermal stability, and environment benignity of its element. The major obstacles of LiFePO4 are two intrinsic conductivity. Improving the conductivity have two methods to solve via two main techniques; One is the reduction of the grain size, it is achieved by solution methods make LiFePO4. In this study, we synthesize LiFePO4 by sol-gel method for cathode material of secondary Li ion batteries, and use ascorbic acid as reducing agent; Two is the manufacture of LiFePO4 coated with high conductivity material; like organic material of carbon source and electronically metal. In this study, we aid fructose and try to find out the best synthetic condition by various thermal treatment.
The grain size of LiFePO4 is increasing with the thermal treatment temperature. We also find that the optimum particle size (32-38nm) are sintered at 500℃ and the lower DC electrical resistivity is at 600℃ in this experiment.
From this experiment, when sintered temperature approximately (500-700℃) increase , the crystalline strength and grain size also increase with temperature.
In the conductive substance addition, the source of carbon which is fructose or ascorbic acid added to LiFePO4 that could increase conductivity of materials obviously, and decrease particle size. The conductivity increasing limit to the quantity of additions.
Reference
1 「Battery Recall Update」.Adv. Batt. Tech. 1989,25,4.
2 A. K. Padhi, K. S. Najundaswamy,J. B. Goodenough. J. Electrochem. Soc. 144, 1188(1997).
3 A. K. Padhi, K. S. Najundaswamy, C. Masquelier, S. Okada,J. B. Goodenough. J. Electrochem. Soc. 144, 1609(1997).
4 M. Armand, D. W. Murphy, J. Broadhead, B. C. H. Steele,
「Materials for Advanced Batteries」, Plenum press, New York, (1980),
145.
5 B. Scrosati, J. Electrochem. Soc., (1992), 139, 2776.
6 R. Fong, U. Sacken, J .R. Dahn, J. Electrochem. Soc., (1990), 137,
2009.
7 X. Qiu, L. Yang, Solid State Ionics, (1993), 60, 351.
8 H. F. Mabuchi, K. Tokumitus, T. Kasuh, J. Electrochem. Soc.,
(1995),142, 3049.
9 林育潤、陳金銘, Materials Science Bulletin, (2005), Vol.12, 28(2)
10 D. Guyomard, J. M, Tarascon , Journal of Power Source, (1995), 54,
92.
11 林月微、吳茂松、李志聰, Materials Science Bulletin, (2005),
Vol.12, 14(2)
12 C. Saadoune, I. Delmas, Solid State Ionics, (1992), 53, 370.
13 M. Wakihara, Mater. SCI. Engineering, (2001), R33, 109-134.
14 劉柏柔,「固態電解質對鋰離子電池性能之研究」義守大學材料科學與工程研究所,1999.
15 J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. Mckinnon, S.
Colson, J. Electrochem. Soc., (1991), 138, 2859.
16 F. Lubin, A. Lecert, M. Broussely&J. Labat, J. Power Sources, 34,
161(1991).
17 P. Endres, B. Fuchs, S. Kemmler-Sack, K. Brandt, G. Faust-Becker, H. W. Praas, Solid State Ionics, 89, 221(1996).
18 M. M. Thackeray, J. Electrochem. Soc, 144, 100(1997).
19 A. Kuwahara, S. Suzuki, M. Miyayama, Ceramics International. 34
(2008)863-866
20 A. S. Anderson, B. Kalska, L. Haggstrom,J. O. Thomas. Solid State Ion.
130,41(2000).
21 A. B. Bykov, A. P. Chirkin, L. N. Demyanets, S. N. Doronin, E. A.
Genkina, Ivanov-shits, I. P. Kondratyuk, B. A. Maksimov, O. K.
Melnikov, LMauradyan, V. I. Simonov, V. A. Timofeeva. Solid State
Ion. 38, 31(1990).
22 G. Rousse, J. Rodriguez-Carvajal, C. Wurm, C. Wurm, C. Masqueliwe.
Solid State Sciences 4, 973(2002).
23 T.H. Cho, H.T. Chung, J. Power Sources.,133,274(2004).
24 X. Li, W. Wang, C. Shi, H. Wang, Y. Xing, J. Solid State
Electrochem. 13,921-926(2009)
25 G. Pistoia, D. Zane and Y. Zhang, J. Electrochem. Soc., 142,
2551, (1995)
26 D. Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosini,
Electrochimica Acta., 49, 4259-4271(2004).
27 A. S. Andersson, J. O. Thomas, J. Power Sources, (2001), 97/98,
498.
28 守吉佑介,植松敬三,伊熊泰郎;「Ceramics no 燒結」;株式會社;
p. 35-64。
29 水恭惟谷,尾崎義治,木村敏夫;「工業陶瓷製程」;復漢出版社;
p. 99-128
30 吳朗;「電子陶瓷介電」;全欣資料圖書;p. 43-125
31 謝佩芫;「以化學共沉法製備鋰鋁錳(鎳、鈷)氧化物及其性質研究」;
國立成功大學化學工程研究所碩士論文(2003)。
32 D. Jugovic, D. Uskokovic, J. Power Sources, 190, (2009) 538-544
33 P. Li, W. He, H. Zhao, S. Wang, J. Alloys and Compounds, 471, (2009)
536-538..
34 S.-T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai,
Eelctrochemica Acta, 49, (2004) 4213-4222
35 J.-K. Kim, J.-W. Choi, G. S. Chauhan, J.-H. Ahn, G.-C. Hwang, J.-B.
Choi, H.-J. Ahn, Eelctrochemica Acta, 53, (2008) 8258-8264
36 G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, J. Power
Sources, 160, (2006) 516-522
37 D. Choi, P. N. Kumta, J. Power Sources, 163, (2007) 1064-1069
38 Y. Huang, H. Reni, Z. Peng, Y. Zhou, Eelctrochemica Acta, 55, (2009)
311-315
39 B.-J. Hwang, K.-F. Hsu, S.-K. Hu, M.-Y. Cheng, T.-C. Chou, S.Y. Tsay,
R. Santhanam, J. Power Sources, 194, (2009) 515-519
40 W. Porcher, B. Lestriez, S. Jouanneau, D.Guyomard, J. Power Sources,
195, (2010) 2835-2843
41 M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya, J.
R. Matos, J. Solid State Ionics. 177, 497-500(2006).
42 L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, Progress
in Materials Science. 50, (2005) 881-928.
43 黃可龍,王兆翔,劉素琴;「鋰離子電池原理與技術」;五南出版社