| 研究生: |
鐘偉豪 Jhong, Wei-Hoa |
|---|---|
| 論文名稱: |
固液界面行為與表面粗糙度對液體熱擴散係數影響之研究 The Effects of Solid-liquid Interfacial Behavior and Surface Roughness on Thermal Diffusivity of Liquids |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 界面親和力 、表面粗糙度 、熱擴散係數 |
| 外文關鍵詞: | solid-liquid affinity, surface roughness, thermal diffusivity |
| 相關次數: | 點閱:156 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為探討固液界面之間親和力的大小與表面粗糙度對於過渡層的厚度與附近熱擴散係數的影響。不同液體對固體有不同的親和力,固體表面的粗糙度也會影響液體對固體的親和力,因此過渡層的厚度與熱傳行為也會不一樣。
本實驗使用正十四烷與水兩種液體,粗糙度不同的銅片當作固體,並以溫度震盪法來量測固體表面附近的之熱擴散係數。利用步階到達次微米等級之步進馬達控制熱電偶與固體的間距;壓克力構成盛裝液體用的容器;製冷片(Peltier)提供一個從底部吸收熱量的途徑來避免液體密度不均勻而發生的對流情況。
由於量測數據的帶寬無法直接得到熱擴散係數,必須透過微擾法。我們提出一個熱擴散係數函數,加入常數γ做為整體評估固液親和力的常數做為一個微擾項,透過數值迭代來得到誤差最小的相位差與振幅比函數,結果皆能落在量測數據之內,代表數值迭代的結果為合理的。固液親合性較好,表面形貌較粗糙,則γ越大,表示過渡層範圍越大;固液親合性越差,表面形貌較平滑,則γ越小,代表過渡層範圍越小。
This study investigates the effects of surface roughness and interfacial behavior on thickness of transition layer and the thermal diffusivity. Different liquids have different affinity for the solid. Surface roughness of solids also affects the affinity between the liquid and solid and leads to that thickness and behavior of the transition layer would not be the same.
We use two kinds of liquid which is n-tetradecane and water, and two copper with different roughness as substrates and measures the thermal diffusivity by oscillation temperature method. Stepping motor which has sub-micro step controls the distance between thermocouples and the substrate. Container for liquids consists of acrylic and other insulation material. Peltier absorbs heat from the bottom to provide a way to avoid the convection because of liquid uneven density.
We get the thermal diffusivity by solving perturbation because the measuring data has small range. Using a new thermal diffusivity function as a perturbation term, the numerical iteration has nice match in the range of data, and provides us a constant, γ, to evaluate the liquid-solid affinity. It has the better affinity and thicker transition layer with larger γ, and poor affinity and thinner transition layer with smaller γ.
[1] Choi, S. U. S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A. Anomalous thermal conductivity enhancement in nano-tube suspensions, Applied Physics Letters, 79, 2252-2254(2001).
[2] Murshed, S.M.S., Leong, K.C., Yang, C. Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, 47, 560–568(2008).
[3] Bhushan, B., Israelachvili, J.N., Landman, U. Nanotribology: friction wear and lubrication at atomic scale, Nature (London), 374, 607-616(1995).
[4] Jang, S. P. and Choi, S. U. S. Role of brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 84, 4316-4318(2004).
[5] D. Hemanth Kumar, Hrishikesh E. Patel, V. R. Rajeev Kumar, T. Sundararajan, T. Pradeep, and Sarit K. Das. Model for heat conduction in nanofluids, Physical Review Letters, 93, 144301-1 - 144301-4(2004).
[6] Yu, C.-J., Richter, A.G., Datta, A., Durbin, M.K., Dutta, P. Molecular layering in a liquid on a solid substrate: an x-ray reflectivity study, Physica B, 283, 27-31(2000).
[7] Wemhoff, A. P. and Carey, V. P. Molecular dynamics exploration of thin liquid films on solid surfaces. 1. Monatomic fluid films, Microscale Thermophysical Engineering, 9, 331–349(2005).
[8] Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121, 280-289(1999).
[9] Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer, 45, 855-863(2002).
[10] Bilboul, R. R. A note on the permittivity of a double layer ellipsoid, Br. Journal of Applied Physics, 2, 921–923(1969).
[11] Yu, W. and Choi, S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. Journal of Nanoparticle Research, 6, 355–361(2004).
[12] Ren, Y., Xie, H. and Cai, A. Effective thermal conductivity of nanofluids containing spherical nanoparticles, Journal of Physics D: Applied Physics, 38, 3958–3961(2005).
[13] Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T. Light-induced amphiphilic surfaces, Nature, 388, 431-432(1997).
[14] Neinhuis, C. and Barthlott, W. Characterization and distribution of water-repellent and self-cleaning plant surfaces, Planta, 79,667-677(1997).
[15] Cassie, A. B. D. and Baxter, S. Wettability of Porous Surface, Transactions of the Faraday Society, 40, 546-551(1944).
[16] Wenzel, R. N. Resistance of solid surface to wetting by water, Industrial & Engineering Chemistry Research, 28, 988-994(1936).
[17] Wenzel, R. N. Surface roughness and contact angle, Journal of Physical and Colloid Chemistry, 53, 1466-1467(1949).
[18] Carslaw, H. S. and Jaeger, J. C. Conduction of heat in solids, Oxford University Press, New York, pp.54-56(1967).
[19] Patel, H. R., Das, S. K., Sundararajan, T., Sreekumaran, N. A., George, B. and Pradeep, T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Applied Physics Letter, 83(14), 2931-2933(2003).
[20] Czarnetzki, W. and Roetzel, W. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity, International Journal Thermophysic, 2, 413-422(1995).
[21] Hysitron TI-700 Ubi User Manual, Hysitron(2007).
[22] Adamson, A. W. Physical Chemistry of Surfaces, 3rd ed., New York, London, Wiley (1976).
[23] Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U. S., Eastman, J. A. Effect of liquid layering at the liquid–solid interface on thermal transport, International Journal of Heat and Mass Transfer 47, 4277–4284(2004).
[24] Maruyama, S. and Kimura, T. A study on thermal resistance over a solid-liquid interface by the molecular dynamics method, Thermal Science & Engineering, 7, 1, 63-68(1999).
[25] TEMPSENS INSTRUMENT TC handbook, TEMPSENS INSTRUMENT.
[26] Bretscher, O. Linear algebra with applications, 3rd ed., Upper Saddle River NJ: Prentice Hall (1995).