簡易檢索 / 詳目顯示

研究生: 周家慧
Chou, Chia-hui
論文名稱: 礁溪地區溫泉人工補注之研究
Investigation of Artificial Recharge in Jiao-Si Hot Spring Area
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 120
中文關鍵詞: TOUGH2溫泉礁溪人工補注
外文關鍵詞: Artificial Recharge, Jiao-Si, TOUGH2, hot spring
相關次數: 點閱:123下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為有效利用以及考量溫泉資源永續利用,合理且適當的人工補注為溫泉資源永續利用管理中考慮之選項。本研究根據礁溪溫泉區地形、地質構造、水文地質參數及地球物理探勘等資料建立水文地質概念模型,並利用數值軟體TOUGH2 數值模擬程式建立研究區之地下水流與熱流傳輸情形,針對影響地下水力及熱力學參數進行敏感性分析,討探參數變化對於模擬之影響,並由敏感度分析結果作為人工補注方案建立依據,設立五種不同人工補注方案,以及評估人工注入對溫泉區可生產量之效益。
    本研究敏感度分析針對各項參數,包括岩石顆粒密度、孔隙率、滲透係數、熱傳導係數及介質比熱,結果指出滲透係數對於地下水流場與熱流場造成之影響最大,而其餘四種參數對於地下水流及熱流影響甚微。在注入量以及注入距離部份,注入量愈大時,生產井增加之可抽用水量愈大,熱流場之溫度受影響範圍愈廣;當注水井與抽水井間距離愈近時,生產井之水位抬升愈高,可抽用水量亦較多。
    在礁溪溫泉案例部分,本研究分別設置交錯式與邊緣式兩類案例進行探討。結果發現礁溪地區由於周圍溫度較低,故注入集中於中心位置時可增加較多之可抽用水量,交錯式設置較邊緣式為佳;在注入深度部分,設置於較深處之人工補注案例,可維持較佳溫泉泉溫及泉質濃度,但在溫泉可抽用量及注入水回收率則以淺層補注效果較佳。

    For effective management and sustainable use of hot spring resources, appropriate artificial recharge would be a feasibility project in hot spring areas. In this research, the hydro-geothermal model is established in order to proceed sensitivity analysis of five hydrogeology parameters including density of rock, porosity, permeability, wet heat conductivity and specific
    heat. Then the TOUGH2 numerical model is applied to evaluate the effect of several schemes of artificial recharge wells on the increased hot spring exploitation in a field case of Jiao-Si hot spring area, Taiwan. Several
    scenarios of cross and boundary types of artificial recharge wells were also established in numerical model.
    The sensitivity results showed that permeability is the most significant parameter in the groundwater flow and geo-temperature changes. The variations caused by others are less significant in sensitivity analysis. Furthermore, the injection rate and the distance between injection well and production well are also important factors in the
    sensitivity analysis. When the amount of water from injection wells increases, the exploitation amount from production wells increases and the influence area of temperature becomes more broad. As the shorter
    distance between injection well and production well is given, the higher water level and the more water exploitation in production well are obtained
    Meanwhile, due to lower temperature outside Jiao-Si hot spring area,the simulated results indicated that when the water amount is injected in the central area, the water amount from exploitation of cross-type well is more efficiency than that of boundary-type case. Besides, exploitation amount of production well for injection in shallow position is larger than that of injection in the deeper position. The decrement of temperature and
    concentration of production well for injection in shallow position are lower than that for injection in the deeper position.

    目錄 摘 要......................................................................................................III ABSTRACT..............................................................................................V 誌 謝.....................................................................................................VII 目 錄................................................................................................... VIII 表 目 錄.................................................................................................XII 圖 目 錄............................................................................................... XIII 第一章 緒論.............................................................................................1 1.1 前言與研究動機...............................................................................1 1.2 文獻回顧...........................................................................................3 1.2.1 人工注入壓力相關文獻.............................................................3 1.2.2 人工注入之熱效率相關文獻....................................................5 1.2.3 人工注入井示蹤試驗及溶質傳輸............................................7 1.2.4 人工注入井現地模擬相關文獻................................................8 1.2.5 人工補注案例相關文獻...........................................................10 1.2.6 文獻回顧討論...........................................................................12 1.3 研究方法與研究流程.....................................................................14 第二章理論模式 ....................................................................................16 2.1 人工補注方式適合性指標建置 ....................................................16 2.1.1 地下水人工補注技術..............................................................16 2.1.2 溫泉人工補注適用技術...........................................................18 2.2 溫泉區人工補注效益評估指標建置.........................................23 2.3 數值程式介紹.................................................................................27 2.4 注水井對生產井流場模式.............................................................34 2.5 地下水流流場模式 ........................................................................35 2.5.1 達西定律(Darcy’s Law) ...........................................................35 2.5.2 流體連續方程式......................................................................36 2.6 地下水熱流場模式 ........................................................................38 2.6.1 熱傳導......................................................................................38 2.6.2 熱對流......................................................................................40 2.6.3 能量傳輸方程式......................................................................41 2.6.4 熱傳導-對流方程式.................................................................42 2.7 冷水及示蹤劑注入模式.................................................................43 第三章注水井與生產井數值模擬之敏感性分析 ................................49 3.1 生產井數值模擬.............................................................................49 3.2 注水對生產井壓力與溫度之影響效應.........................................51 3.3 注水量變化之敏感性分析.............................................................53 3.4 注水距離變化之敏感度分析.........................................................57 3.5 各項水力參數對模式流場與熱流場之敏感性分析 ....................62 3.5.1 岩石顆粒密度...........................................................................63 3.5.2 孔隙率.......................................................................................65 3.5.3 透水係數...................................................................................66 3.5.4.熱傳導係數...............................................................................67 3.5.5 介質比熱...................................................................................68 3.6 敏感性分析結果與討論.................................................................70 第四章礁溪溫泉區案例研究 ................................................................71 4.1 礁溪溫泉區背景介紹及利用現況 ................................................71 4.1.1 地理環境..................................................................................73 4.1.2 地質構造..................................................................................75 4.1.3 溫泉形成機制與產狀..............................................................78 4.1.4 礁溪地區溫泉徵兆調查...........................................................81 4.2 礁溪溫泉區數值模擬 ....................................................................82 4.2.1 研究區域劃定及數值模型設定..............................................82 4.2.2 研究區域水文地質參數資料..................................................85 4.2.3 研究區域數值模型水壓力分佈..............................................86 4.2.4 研究區域數值模型溫度分佈..................................................86 4.3 礁溪溫泉區可抽用水量與人工注入模擬 ....................................87 4.3.1 研究區域可抽用水量推估......................................................87 4.3.2 研究區域人工注入模擬...........................................................88 4.4 人工補注結果分析與討論 ............................................................94 4.4.1 交錯式注入井設置案例分析..................................................94 4.4.2 邊緣式注入井設置案例分析................................................100 4.4.3 案例補注效益分析.................................................................105 第五章結論與建議 ............................................................................108 5.1 結論...............................................................................................108 5.2 建議...............................................................................................110 參考文獻.................................................................................................111 個人簡歷.................................................................................................120

    考文獻
    1. Adrian, B., “Heat transfer”, John Wiley & Sons, Inc., New York
    (1993).
    2. Axelsson, G., Bjornsson, G., Fldvenz, O. G., Kristmannsdóttir, H.
    and Sverrisddttir, G., “Injection Experiments in Low-Temperature
    Geothermal Areas in Iceland,” Proceedings of the World Geothermal
    Congress, pp.1991-1996 (1995).
    3. Axelsson, G., Flovenza, O. G., Hauksdottira, S., Hjartarsona, A. and
    Liub, J., “Analysis of tracer test data, and injection-induced cooling,
    in the Laugaland geothermal field, N-Iceland,” Geothermics 30,
    pp.697-725 (2001).
    4. Axtmann, R. C. and Grant-Taylor, D., “Desilication of geothermal
    waste waters in fluidized beds,” Geothermics 15, pp.185.191 (1986).
    5. Barker, B. J., Koenig, B. A. and Stark, M. A., “Water injection
    management for resource maximization : observation from 25 years
    at The Geysers,” Proceedings of World Geothermal Congress
    pp.1959-1964 (1995).
    6. Bear, J., “Dynamics of fluid in porous media,” American Elsevier Pub.
    Co., New York (1972).
    7. Bodvarsson, G. S. and Stefansson, V., “Some theoretical and field
    aspects of reinjection in geothermal reservoirs,” Water Resources
    Research 25(6), pp.1235-1248 (1989).
    8. Bodvarsson, G. S. and Tsang, C. F., “Injection into a fractured
    geothermal reservoir,” Transactions Geothermal Resources Council 4,
    112
    pp.393-396 (1982).
    9. Bodvarsson, G. S., “Thermal problems in the sitting of reinjection
    wells,” Geothermics 1(2), pp.63-66 (1972).
    10. Bodvarsson, G., “Geothermal resource energetics,” Geothermics 3,
    pp.83-92 (1974).
    11. Brauner, E. Jr. and Carlson, D. C., “Santa Rosa Geysers Recharge
    Project: GEO-98-001 Final Report,” Office of Scientific and
    Technical Information (2002).
    12. Cendejas, F. A. and Rodriguez, J. R., “Heat transfer processes during
    low or high enthalpy fluid injection into naturally fractured
    reservoirs,” Proceedings 19th workshop on geothermal reservoir
    engineering, Standford University, Stanford, CA, pp.139-146 (1994).
    13. Dobson, P. F., Salah, S., Spycher, N. and Sonnenth, E., “Simulation of
    water–rock interaction in the Yellowstone geothermal system using
    TOUGHREACT,” Geothermics 33, pp.493–502 (2003).
    14. Domenico, P. A., and Schwartz, F. W. “Physical and Chemical
    Hydrogeology,” Wiley, New York (1990).
    15. European Environment Agency (EEA), “Environmental Indicators:
    Typology and Overview,” EEA, Copenhagen, Denmark (1999).
    16. Frind, E. O., “Simulation of long-term transient density-dependent
    transport in groundwater,” Adv. Water Resources, 5(2), pp.73-88
    (1982).
    17. Garg, S. K. and Combs, J. “Use of slim holes with liquid feedzones
    for geothermal reservoir assessment,” Geothermics 26(2),
    pp.153-178 (1997).
    113
    18. Goyal, K. P. and Narasimhan, T. N., “Heat and mass transfer in a
    fault-controlled geothermal reservoir charged at constant pressure,”
    Journal of Geophysical Research 87, Issue B10, pp.8581-8590
    (1982).
    19. Goyal, K. P., “Injection related cooling in the Unit 13 area of the
    Southeast Geysers, California, USA,” Geothermics 28, pp.3-19
    (1999).
    20. Gringarten, A. C. and Sauty, J. P., “A theoretical study of heat
    extraction from aquifer with uniform regional flow,” Journal of
    Geophysical Research 80, pp.49-56 (1975).
    21. Hirowatari, K., “Development-related changes in the Hatchobori
    geothermal system, Japan,” Geochemical Journal 25(4), pp. 283-299
    (1991).
    22. Horne, R. N., “Geothermal reinjection experience in Japan,” Journal
    of Petroleum Technology 34, pp.495-503 (1982).
    23. Horne, R. N., “Tracer analysis of fractured geothermal systems,”
    Transactions Geothermal Resources Council 5, pp.291-294 (1981).
    24. Hosca, H. and Okandan, E., “Reinjection model studies in fractured
    and homogeneous geothermal systems,” Proceedings 11th workshop
    on geothermal reservoir engineering, Stanford University, Stanford,
    CA, pp.85.91 (1986).
    25. Jonathan D. Leaver and Charles P. Unsworth, “System dynamics
    modeling of spring behaviour in the Orakeikorako geothermal field,
    New Zealand,” Geothermics 36, pp.101-114 (2007).
    26. Kiryukhin, A. V. and Yampolsky, V. A. “Modeling study of the
    114
    Pauzhetsky geothermal field, Kamchatka, Russia,” Geothermics
    33(4) , pp. 421-442 (2004).
    27. Kissling, W. M. and Weir G. J., “The spatial distribution of the
    geothermal fields in the Taupo Volcanic Zone, New Zealand” Journal
    of Volcanology and Geothermal Research 145, Issue 1-2,
    pp.136-150 (2005).
    28. Kumagai, N., Tanakab, T. and Kitaoc, K., “Characterization of
    geothermal fluid flows at Sumikawa geothermal area, Japan, using
    two types of tracers and an improved multi-path model,”
    Geothermics 33, pp.257-275 (2004).
    29. Li, K., Nassori, H. and Horne, R. N. “Experimental Study of Water
    Injection into Geothermal Reservoirs,” Geothermal Resources
    Council Transactions 25, pp.1-10 (2001).
    30. Lippmann, M. J. and Truesdell, A. H., “Beneficial effects of
    groundwater entry into liquid-dominated geothermal systems,”
    Transactions Geothermal Resources Council 14, pp.721-727 (1990).
    31. Lovekin, J. and Horne, R. N., “Optimization of injection scheduling
    in geothermal fields,” Transactions Geothermal Resources Council
    11, pp.607-614 (1987).
    32. Nakao, S. and Ishido, T., “Pressure-transient behavior during cold
    water injection into geothermal wells,” Geothermics 27(4),
    pp.401-413 (1998).
    33. O’Sullivan, M. J., Pruess, K. and Lippmann, M. J., “State of the art of
    geothermal reservoir simulation,” Geothermics, 30, pp.395-429
    (2001).
    115
    34. Ogino, F. and Yamamura, M., “Pressure drop of water flow between
    injection and production and production wells intersected by a
    circular fracture,” Geothermics 27(1), pp.25-41 (1998).
    35. Oldenburg, C. M. and Pruess, K., “Simulation of propagating fronts
    in geothermal reservoirs with the implicit Leonard total variation
    diminishing scheme,” Geothermics 29, pp. 1-25 (2000).
    36. Organization for Economic Co-operation and Development (OECD),
    “OECD Core Set of Indicators for Environmental Performance
    Reviews,” OECD, Paris, Fance (1993).
    37. Porras, E. A., Tanaka, T., Fujii, H. and Itoi, R., “Numerical modeling
    of the Momotombo geothermal system, Nicaragua,” Geothermics 36,
    pp.304-329 (2007).
    38. Pruess, K. and Bodvarsson, G. S., “Thermal effects of reinjection in
    geothermal reservoirs with major vertical fractures,” Journal of
    Petroleum Technology 36, pp.1567-1578 (1984).
    39. Pruess, K., “Numerical modeling of water injection into
    vapor-dominated geothermal reservoirs,” Office of Scientific &
    Technical Information, OSTI ID: 932475 (2006).
    40. Pruess, K., Oldenburg, C. M. and Moridis, G., “TOUGH2 User’s
    Guide, Version 2.0,” Lawerence Berkeley National Laboratory
    Report LBNL 43134, November (1999).
    41. Sarak, H., Onur, M. and Satman, A., “Lumped-Parameter models for
    low-temperature geothermal fields and their application,”
    Geothermics, 34, PP.728-755 (2005).
    42. Sigurdsson, O., Arason, P. and Stefansson, V., “Reinjection strategy
    116
    for geothermal systems,” Proceedings of the World Geothermal
    Congress, pp.1967-1971 (1995).
    43. Stefansson, V., “Geothermal reinjection experience,” Geothermics
    26(1), pp.99-139 (1997).
    44. Stefansson, V., Axelsson, G.,. Sigurosson, O. and Kjaran, S. P.,
    “Geothermal Reservoir Management in Iceland,” Proceedings of the
    World Geothermal Congress, Florence, Italy, May, pp.1763-1768
    (1995).
    45. Sullera, M. M. and Horne, R. N., “Inferring injection returns from
    chloride monitoring data,” Geothermics 30, pp.591–616 (2001).
    46. Todesco, M., Rutqvist, J., Chiodini, G., Pruess, K. and Oldenburg, C.
    M., “Modeling of recent volcanic episodes at Phlegrean Fields (Italy):
    geochemical variations and ground deformation,” Geothermics 33,
    pp.531-547 (2004).
    47. United Nations Divistion for Sustainable Development (UNDSD)
    “Indicators of Sustainable Development: Guidelines and
    Methodologies,” United Nations, New York, USA (2001).
    48. Valladares, G., Sanchez-Upton, P. and Santoyo E., “Numerical
    modeling of flow processes inside geothermal wells: An approach for
    predicting production characteristics with uncertainties,” Energy
    Conversion and Management 47, pp.1621–1643 (2006).
    49. Vereina B., “Thermohydrodynamic Modeling of the Natural State of
    the Mutnovsky Geothermal Reservoir (Kamchatka),” Lithology and
    Mineral Resources 42(6), pp. 523-532 (2007).
    50. Warner, Don. L. and Ugur. Algan, “Thermal impact of residential
    117
    ground-water heat pumps,” Ground water 22(1), pp.6-12(1984).
    51. Xu, T., Sonnenthal, E., Spycher, N. and Pruess K.,
    “TOUGHREACT—A simulation program for non-isothermal
    multiphase reactive geochemical transport in variably saturated
    geologic media: Applications to geothermal injectivity and CO2
    geological sequestration,” Computers & Geosciences 32(2),
    pp.145–165 (2006).
    52. Zarrouk, S., O’Sullivan, M., Croucher, A. and Mannington, W. ,
    “Numerical modelling of production from the Poihipidry steam zone:
    Wairakei geothermal system, New Zealand,” Geothermics 36,
    pp.289–303 (2007).
    53. 工業技術研究院能源與資源研究所,「礁溪溫泉區地球物理及鑽井
    探勘報告」,宜蘭縣政府 (1993)。
    54. 王惠民、張智欽,「礁溪溫泉資源調查監測與利用計畫規劃報告
    書」,宜蘭縣政府委託,台大城鄉宜蘭工作室執行 (2002)。
    55. 史天元、邱元宏,「臺灣地區數值密度模型產生之研究」,中華地
    理資訊學會學術研討會論文集 (1996)。
    56. 何春蓀,「普通地質學」,五南圖書 (1994)。
    57. 吳永助,「臺灣溫泉區之地熱潛能」,礦業技術,第10卷,第12期,
    第2-6頁 (1973)。
    58. 吳聲暉,「雪山隧道開鑿滲流量與翡翠水庫進流量相關性之研
    究」,國立成功大學資源工程學系碩士論文 (2005)。
    118
    59. 李振誥、李京霖、龔文瑞,「陽明山馬槽地區溫泉資源調查分析之
    研究」,台灣水利,第55卷,第3期,第46-53頁(2007)。
    60. 李振誥、林士哲、馬惠達、林宏奕,「金崙溫泉資源之調查分析」,
    台灣水利,第51卷,第3期,第58-68頁 (2003)。
    61. 李振誥、陳尉平、龔文瑞、陳進發、林宏奕,「溫泉可開發量推估
    及其應用於烏來溫泉區」,台灣水利,第56卷,第1期,第60-68
    頁 (2007)。
    62. 李振誥與徐國錦,「地下水補注措施與管理評估」,中國工程師學
    會會刊,第80卷,第6期,第80-90頁 (2007)。
    63. 宜蘭縣政府,「礁溪岩盤溫泉調查開發供應與溫泉區畫定計畫第一
    階段定案報告書」,工業技術研究院 (2003)。
    64. 宜蘭縣政府,「礁溪溫泉資源調查監測與利用」,台灣大學建築與
    城鄉研究發展基金會 (2002)。
    65. 夏龍源、李和祥、李振誥、葉義章、馬惠達,「中崙地區溫泉資源
    之調查分析」,台灣水利,第53卷,第2期,第54-64頁 (2005)。
    66. 徐人義,「應用水文學」,大中國圖書公司 (1995)。
    67. 張智欽,「礁溪溫泉進行式-現況分析」,蘭陽博物館電子報,(2007)。
    68. 張寶堂,「礁溪溫泉資源調查與開發之研究」,國立台北科技大學
    材料與資源工程學系碩士論文 (2004)。
    119
    69. 陳志豪,「TCDP鑽井岩心之熱參數直接量測與相關物理特性研
    究」,國立中央大學應用地質研究所碩士論文 (2006)。
    70. 黃宗煌,「綠色國民所得與國家永續發展之關係」,主計月刊,第
    565期,第1-10頁 (2003)。
    71. 經濟部水利署,「北區溫泉監測系統站址規劃設計」,玉山資源有
    限公司,2008。
    72. 經濟部水利署,「台灣溫泉水資源之調查及開發利用(2/4)」
    (2001)。
    73. 經濟部水利署,地下水觀測網教材,經濟部水利署網站。
    74. 劉進金,「溫泉資源保育與管理」,溫泉資源開發技術與保育管理
    研討會論文集,第157-194頁 (2002)。
    75. 周順安,「台灣溫泉資源分布與利用」,工研院能資源所 (2004)。

    下載圖示 校內:立即公開
    校外:2009-07-02公開
    QR CODE