| 研究生: |
賴臆升 Lai, Yi-Sheng |
|---|---|
| 論文名稱: |
金屬氧化物半導體奈米粒子應用於自旋電子量子計算與產氫 Spintronic Polaron Channel Modulator of Metal-Oxide Semiconductor Nanoparticles in 4 Qubits Quantum Computing and Hydrogen Evolution |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 金屬氧化物半導體 、水分解產氫 、極化子表面態 、自旋電子 、量子計算 |
| 外文關鍵詞: | Metal-oxide semiconductor, water splitting, polaron surface state, spintronic, quantum computing |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解決能源危機和環境污染問題,用於綠色能源發電和儲存裝置的水分解太陽能電池被認為是最佳解決方案。
鹵化色變性質之染料被視為是二氧化鋯奈米粒子之水分解薄膜電池元件最佳的光敏化劑。鹵化色變性質之染料的激發態能階由具有不同pH值的電解質所控制,作為二氧化鋯之導帶到電子遷移至白金電極端的能階。水分解效率可達約為0.236%,且光誘導之水分解的氫氣產生率可高達1.8 mL / h·cm2。
在接下來的實驗中,採用天然葉綠素分子作為水分解薄膜電池元件最佳的光敏化劑。馬纓丹(Lantana camara)被視為天然葉綠素的來源,在實驗中作為寬能帶之二氧化鋯的光敏化劑,並為二氧化鋯提供激發態電子遷移的能階。化學發光分子紅熒烯和9,10-二苯基蒽酮通過熒光共振能量轉移(FRET)機制和化學發光輻射為塗有天然葉綠素的二氧化鋯提供更多的光子能量,此過程可使得水分解電池元件之水分解產氫效率高達12.77 %。
二氧化鈰奈米粒子之表面由許多氧空缺以及鈰離子的氧化還原過程(Ce+3↔Ce+4)中所形成的極化子所覆蓋。透過具備ħ/-ħ角動量圓偏振雷射光之耦合,可產生單一自旋方向之自旋電子。其極化率可高達75%。而此元件應用於水分解產氫之系統,其能量轉換率高達161%。此外,在該電池元件之電路系統中自旋電子的電荷遷移率提高到2.19×1015m2 /(V·s)。從量子計算和量子層析成像的進一步應用來看,相干ħ/-ħ角動量圓偏振雷射從二氧化鈰奈米粒子之極化子表面態產生自旋電子,實現了4量子位量子糾纏和層析成像系統。過程中水分解的能量轉換效率和自旋電子控制系統得到很好的控制,並在不久的將來帶來實際的用處。
For solving the problems of energy risk and environmental pollutions, water splitting solar cells for green energy generation and storage devices are considered as the best solution.
Halochromic pigments sever as the photosensitizers of ZrO2 NPs thin films water splitting cells. The excited energy level of halochromic pigments are acting as the energy level steps of the conduction band energy level of ZrO2 for electrons migrating. The water splitting efficiency is around 0.236 % and the hydrogen generation rate from photoinduced water splitting processing is as high as 1.8 mL/h·cm2.
Lantana camara is utilized as the source of nature chlorophyll which serves as the photosensitizer for wide band gap ZrO2 as the step of energy level for excited energy level transferring. The chemiluminescence molecules rubrene and 9,10-diphenylanthrance provide photon energy by fluorescence resonance energy transfer (FRET) mechanism and chemiluminescence irradiation. The water splitting efficiency is as high as 12.77 %.
The small polaron surface state covered CeO2-x NPs thin films water splitting cells operator as the spintronic modulator when redox reaction of Ce+3 ↔ Ce+4 from O vacancy and Ce ions corresponding with coherent ħ and - ħ angular momentum circular polarization laser light injection. The spin polarization is as high as 75 %, the energy conversion from water splitting and hydrogen evolution is up to 161 %. Furthermore, the charge mobility of the spintronic in cell circuit is raising up to 2.19×1015 m2/(V·s). From the furthering application of quantum computing and quantum tomography, the coherent ħ and - ħ angular momentum circular polarization laser light generate the spintronic from small polaron surface state covered CeO2 NPs thin films and achieving the 4 qubits quantum entanglement and tomography system. The energy conversion efficiency and spintronics controlling systems of the water splitting is well controlled and give the actual benefits in near future.
1. Barreto, L.; Makihira, A.; Riahi, K., The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy 2003, 28 (3), 267-284.
2. Sygletou, M.; Petridis, C.; Kymakis, E.; Stratakis, E., Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Adv Mater 2017, 29 (39).
3. Mehran, M. T.; Yu, S.-B.; Lee, D.-Y.; Hong, J.-E.; Lee, S.-B.; Park, S.-J.; Song, R.-H.; Lim, T.-H., Production of syngas from H 2 O/CO 2 by high-pressure coelectrolysis in tubular solid oxide cells. Applied Energy 2018, 212, 759-770.
4. Zhao, Z.; Uddi, M.; Tsvetkov, N.; Yildiz, B.; Ghoniem, A. F., Redox Kinetics and Nonstoichiometry of Ce0.5Zr0.5O2−δ for Water Splitting and Hydrogen Production. The Journal of Physical Chemistry C 2017, 121 (21), 11055-11068.
5. Council, N. R.; Engineering, N. A. o., The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. The National Academies Press: Washington, DC, 2004; p 256.
6. Green, M. A.; Bremner, S. P., Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Materials 2017, 16 (1), 23-34.
7. Kolesov, V. A.; Fuentes-Hernandez, C.; Chou, W. F.; Aizawa, N.; Larrain, F. A.; Wang, M.; Perrotta, A.; Choi, S.; Graham, S.; Bazan, G. C.; Nguyen, T. Q.; Marder, S. R.; Kippelen, B., Solution-based electrical doping of semiconducting polymer films over a limited depth. Nature Materials 2017, 16 (4), 474-+.
8. Yang, J. H.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C. H.; Gul, S.; Yano, J. K.; Kisielowski, C.; Schwartzberg, A.; Sharp, I. D., A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials 2017, 16 (3), 335-341.
9. Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J., Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533 (7601), 73-76.
10. Tsai, H. H.; Nie, W. Y.; Blancon, J. C.; Toumpos, C. C. S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D., High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536 (7616), 312-316.
11. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H., 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced materials (Deerfield Beach, Fla.) 2015, 28.
12. Zhang, J. Q.; Li, L.; Xiao, Z. X.; Liu, D.; Wang, S.; Zhang, J. J.; Hao, Y. T.; Zhang, W. Z., Hollow Sphere TiO2-ZrO2 Prepared by Self-Assembly with Polystyrene Colloidal Template for Both Photocatalytic Degradation and H-2 Evolution from Water Splitting. Acs Sustainable Chemistry & Engineering 2016, 4 (4), 2037-2046.
13. Lai, Y.-S.; Su, Y. H.; Lin, M. I., Photochemical water splitting performance of fluorescein, rhodamine B, and chlorophyll-Cu supported on ZrO2 nanoparticles layer anode. Dyes and Pigments 2014, 103, 76-81.
14. Su, Y. H.; Lai, Y. S., Performance enhancement of natural pigments on a high light transmission ZrO2 nanoparticle layer in a water-based dye-sensitized solar cell. International Journal of Energy Research 2014, 38 (4), 436-443.
15. Zavakhina, M. S.; Yushina, I. V.; Samsonenko, D. G.; Dybtsev, D. N.; Fedin, V. P.; Argent, S. P.; Blake, A. J.; Schroder, M., Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids. Dalton Trans 2017, 46 (2), 465-470.
16. Lai, Y.-S.; Del Rosario, M. A. J. V. G.; Chen, W.-F.; Yen, S.-C.; Pan, F.; Ren, Q.; Su, Y.-H., Energy-Yielding Mini Heat Thermocells with WS2 Water-Splitting Dual System to Recycle Wasted Heat. ACS Applied Energy Materials 2019, 2 (10), 7092-7103.
17. Ho, M. Y.; Shen, G. Z.; Canniffe, D. P.; Zhao, C.; Bryant, D. A., Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 2016, 353 (6302), 886-+.
18. Hazrati, S.; Tahmasebi-Sarvestani, Z.; Modarres-Sanavy, S. A. M.; Mokhtassi-Bidgoli, A.; Nicola, S., Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry 2016, 106, 141-148.
19. Deshapande, N.; Belavagi, N. S.; Sunagar, M. G.; Gaonkar, S.; Pujar, G. H.; Wari, M. N.; Inamdar, S. R.; Khazi, I. A. M., Synthesis, characterization and optoelectronic investigations of bithiophene substituted 1,3,4-oxadiazole derivatives as green fluorescent materials. RSC Advances 2015, 5 (105), 86685-86696.
20. Lai, Y. S.; Pan, F.; Su, Y. H., Firefly-like Water Splitting Cells Based on FRET Phenomena with Ultrahigh Performance over 12. ACS Appl Mater Interfaces 2018, 10 (5), 5007-5013.
21. Lai, Y.-S.; Lu, H.-H.; Su, Y.-H., High-Efficiency Water-Splitting Solar Cells with Low Diffusion Resistance Corresponding to Halochromic Pigments Interfacing with ZrO2. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 7716-7722.
22. I. K. NAIK, T. Y. T., SMALL-POLARON MOBILITY IN NONSTOICHIOMETRIC CERIUM DIOXIDE. J. Phys. Chem. Solids. 1978, 39, 311-315.
23. Plata, J. J.; Márquez, A. M.; Sanz, J. F., Electron Mobility via Polaron Hopping in Bulk Ceria: A First-Principles Study. The Journal of Physical Chemistry C 2013, 117 (28), 14502-14509.
24. Su, Y.-Q.; Filot, I. A. W.; Liu, J.-X.; Tranca, I.; Hensen, E. J. M., Charge Transport over the Defective CeO2(111) Surface. Chemistry of Materials 2016, 28 (16), 5652-5658.
25. Bulfin, B.; Call, F.; Lange, M.; Lübben, O.; Sattler, C.; Pitz-Paal, R.; Shvets, I. V., Thermodynamics of CeO2 Thermochemical Fuel Production. Energy & Fuels 2015, 29 (2), 1001-1009.
26. Funk, J. E., Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy 2001, 26, 185-190.
27. Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A., Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2. Energy & Fuels 2015, 29 (5), 3241-3250.
28. Sutton, J. E.; Beste, A.; Overbury, S. H., Origins and implications of the ordering of oxygen vacancies and localized electrons on partially reducedCeO2(111). Physical Review B 2015, 92 (14).
29. Sun, L.; Huang, X. W.; Wang, L. E.; Janotti, A., Disentangling the role of small polarons and oxygen vacancies in CeO2. Physical Review B 2017, 95 (24).
30. Otte, E.; Rosales-Guzmán, C.; Ndagano, B.; Denz, C.; Forbes, A., Entanglement beating in free space through spin–orbit coupling. Light: Science & Applications 2018, 7, 18009.
31. Ding, Y.; Wang, Y., Intrinsic magnetism and electronic structure of graphene-like Be3C2 nanoribbons and their Si, Ge analogues: a computational study. Journal of Materials Chemistry C 2017, 5 (41), 10728-10736.
32. Feng, J.; Lv, F.; Zhang, W.; Li, P.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J.; Lin, F.; Wang, G. C.; Guo, S., Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis. Adv Mater 2017, 29 (47), 1703798-1703805.
33. Li, S.-S.; Xia, J.-B., Spin-orbit splitting of a hydrogenic donor impurity in GaAs∕GaAlAs quantum wells. Applied Physics Letters 2008, 92 (2), 022102.
34. Qin, L.; Lü, H.-F.; Guo, Y., Enhanced spin injection efficiency in a four-terminal quantum dots system. Applied Physics Letters 2010, 96 (7), 072109.
35. Matityahu, S.; Aharony, A.; Entin-Wohlman, O.; Tarucha, S., Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer. New Journal of Physics 2013, 15 (12), 125017.
36. Huang, Y.; Puttisong, Y.; Buyanova, I. A.; Chen, W. M., Understanding and optimizing spin injection in self-assembled InAs/GaAs quantum-dot molecular structures. Nano Research 2016, 9 (3), 602-611.
37. Xiong, Y.-C.; Li, W.; Zhang, J.; Nan, N.; Laref, A., Voltage-controllable multifunctional spin polarizer based on side-coupled quantum dots. Journal of Magnetism and Magnetic Materials 2019, 491, 165566.
38. Sorenson, S.; Driscoll, E.; Haghighat, S.; Dawlaty, J. M., Ultrafast Carrier Dynamics in Hematite Films: The Role of Photoexcited Electrons in the Transient Optical Response. The Journal of Physical Chemistry C 2014, 118 (41), 23621-23626.
39. Fitzmorris, B. C.; Patete, J. M.; Smith, J.; Mascorro, X.; Adams, S.; Wong, S. S.; Zhang, J. Z., Ultrafast Transient Absorption Studies of Hematite Nanoparticles: The Effect of Particle Shape on Exciton Dynamics. ChemSusChem 2013, 6 (10), 1907-1914.
40. Devreese, J. T., Polarons. In digital Encyclopedia of Applied Physics, Wiley, online: New York City, United States, 2003.
41. Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y.; Yang, P.; Alivisatos, A. P.; Leone, S. R., Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in alpha-Fe2O3. Nat Mater 2017, 16 (8), 819-825.
42. Kaminski, A.; Das Sarma, S., Polaron Percolation in Diluted Magnetic Semiconductors. Physical Review Letters 2002, 88 (24), 247202.
43. E. Funk, J., Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy 2001, 26 (3), 185-190.
44. Navarro Yerga, R. M.; Álvarez Galván, M. C.; del Valle, F.; Villoria de la Mano, J. A.; Fierro, J. L. G., Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation. ChemSusChem 2009, 2 (6), 471-485.
45. Gudin, S. A.; Solin, N. I.; Gapontseva, N. N., Colossal Magnetoresistance of Layered Manganite La1.2Sr1.8Mn2O7 and Its Description by a "Spin-Polaron" Conduction Mechanism. Physics of the Solid State 2018, 60 (6), 1078-1081.
46. Xie, Y.; Chen, M.; Wu, Z.; Hu, Y.; Wang, Y.; Wang, J.; Guo, H., Two-Dimensional Photogalvanic Spin-Battery. Physical Review Applied 2018, 10 (3), 034005.
47. Meier, F.; Zakharchenya, B. P., Optical Orientation. In Modern Problems in Condensed Matter Sciences, Meier, F.; Zakharchenya, B. P., Eds. Elsevier: 1984; Vol. 8, pp vii-ix.
48. Zhukov, E. A.; Kusrayev, Y. G.; Kavokin, K. V.; Yakovlev, D. R.; Debus, J.; Schwan, A.; Akimov, I. A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M., Optical orientation of hole magnetic polarons in (Cd,Mn)Te/(Cd,Mn,Mg)Te quantum wells. Physical Review B 2016, 93 (24), 245305.
49. Jen, K. M. O. M. H. L. Y. A. K. Y., Metal Oxide Interlayers for Polymer Solar Cells. In Organic Photovoltaics. In Organic Photovoltaics: Metal Oxide Interlayers for Polymer Solar Cells, C. Brabec, U. S. a. V. D., Ed. Wiley-VCH: Weinheim, Germany, 2014.
50. Mtangi, W.; Kiran, V.; Fontanesi, C.; Naaman, R., Role of the Electron Spin Polarization in Water Splitting. The Journal of Physical Chemistry Letters 2015, 6 (24), 4916-4922.
51. Bagherzadeh, S. B.; Haghighi, M.; Rahemi, N., Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading. Energy Conversion and Management 2017, 134, 88-102.
52. Bloor, L. G.; Solarska, R.; Bienkowski, K.; Kulesza, P. J.; Augustynski, J.; Symes, M. D.; Cronin, L., Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer. Journal of the American Chemical Society 2016, 138 (21), 6707-6710.
53. Kumari, S.; Turner White, R.; Kumar, B.; Spurgeon, J. M., Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science 2016, 9 (5), 1725-1733.
54. Zadeh, E. H. G.; Tang, S.; Woodward, A. W.; Liu, T.; Bondar, M. V.; Belfield, K. D., Chromophoric materials derived from a natural azulene: syntheses, halochromism and one-photon and two-photon microlithography. Journal of Materials Chemistry C 2015, 3 (33), 8495-8503.
55. Gujjala, L. K. S.; Bandyopadhyay, T. K.; Banerjee, R., Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource Technology 2016, 212, 47-54.
56. Mundike, J.; Collard, F. X.; Gorgens, J. F., Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value. Bioresource Technology 2016, 209, 90-99.
57. Reineke, S.; Baldo, M. A., Room temperature triplet state spectroscopy of organic semiconductors. Scientific Reports 2014, 4, 3797.
58. Shyamal, M.; Mazumdar, P.; Maity, S.; Sahoo, G. P.; Salgado-Morán, G.; Misra, A., Pyrene Scaffold as Real-Time Fluorescent Turn-on Chemosensor for Selective Detection of Trace-Level Al(III) and Its Aggregation-Induced Emission Enhancement. The Journal of Physical Chemistry A 2016, 120 (2), 210-220.
59. Balasubramanian, K., Forster resonance energy transfer between alpha-Bi2O3 nanorods and rhodamine 6G in aqueous media for turn-off glucose-sensing application. Journal of Physics D-Applied Physics 2017, 50 (14).
60. Lin, Y.-J.; Chen, J.-W.; Hsiao, P.-T.; Tung, Y.-L.; Chang, C.-C.; Chen, C.-M., Efficiency improvement of dye-sensitized solar cells by in situ fluorescence resonance energy transfer. Journal of Materials Chemistry A 2017, 5 (19), 9081-9089.
61. Xu, F.; Wei, L.; Chen, Z.; Min, W., Frustrated FRET for high-contrast high-resolution two-photon imaging. Optics express 2013, 21, 14097-14108.
62. Tummeltshammer, C.; Portnoi, M.; Mitchell, S. A.; Lee, A.-T.; Kenyon, A. J.; Tabor, A. B.; Papakonstantinou, I., On the ability of Forster resonance energy transfer to enhance luminescent solar concentrator efficiency. Nano Energy 2017, 32, 263-270.
63. Zheng, Z.; Tummala, N. R.; Fu, Y. T.; Coropceanu, V.; Bredas, J. L., Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. ACS Appl Mater Interfaces 2017, 9 (21), 18095-18102.
64. Lombardi, P.; Ovvyan, A. P.; Pazzagli, S.; Mazzamuto, G.; Kewes, G.; Neitzke, O.; Gruhler, N.; Benson, O.; Pernice, W. H. P.; Cataliotti, F. S.; Toninelli, C., Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics 2017, 5 (1), 126-132.
65. Younis, A.; Chu, D.; Kaneti, Y. V.; Li, S., Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale 2016, 8 (1), 378-87.
66. Hacker, B.; Welte, S.; Rempe, G.; Ritter, S., A photon-photon quantum gate based on a single atom in an optical resonator. Nature 2016, 536 (7615), 193-198.
67. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Kalathil, S.; Lee, J.; Cho, M. H., Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Advances 2014, 4 (32), 16782-16791.
68. Reimer, C.; Kues, M.; Roztocki, P.; Wetzel, B.; Grazioso, F.; Little, B.; Chu, S.; Johnston, T.; Bromberg, Y.; Caspani, L.; Moss, D.; Morandotti, R., Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 2016, 351, 1176-1180.
校內:2024-12-25公開