| 研究生: |
徐世豪 Hsu, Shih-Hao |
|---|---|
| 論文名稱: |
台灣西南部發震構造之研究 Seismotectonics of Southwestern Taiwan |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 地震重新定位 、震源機制 、應力反演 、斷層再活動 |
| 外文關鍵詞: | earthquake relocation, focal mechanisms, stress inversion, reactivation |
| 相關次數: | 點閱:57 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由中央氣象局短週期地震站於自1991年1月至2002年9月間於台灣西南部所記錄19290筆ML≧1之地震資料,依據地震分布特性,將台灣西南部地區分為嘉義、瑞里、大埔、東南區、北區及西區等六個區塊。並進行雙差分地震重新定位法和三維地震重新定位、震源機制解推求(ML≧3.5共283個),及應力反演等分析,協助我們確認嘉南地區發震構造之幾何形貌及位置,並評估各發震構造之最大地震潛能。
研究結果顯示:(1) 集集地震前,嘉義、瑞里地區之應力狀態由於受到先前存在正斷層之幾何形貌及斷層走向影響,故σ2、σ3交錯分佈呈現帶狀形貌(gridle),其σ2及σ3的值因相當接近而易發生主應力軸互換;集集地震後,應力系統發生改變,σ2位於垂直地表方向,應力狀態呈走向滑移型態。(2)以北緯23.4o為界分析南北之應力反演結果,北群地震所得最大主應力軸σ1之方位角為130o,南群地震則為110o,此結果反映地殼尺度之最大主應力軸隨當地構造走向之變化而旋轉。(3) 嘉義南側深度4-17公里處存在一向西傾斜,傾角30o之逆斷層,斷層面積評估為128平方公里,潛在可發生之最大地震規模為Mw 6.2;北側則存在斷層面近乎垂直之走向滑移斷層,斷層面積評估為500平方公里,最大地震規模為Mw 6.7。(4) 觸口斷層北段之斷層特性為深0-10公里,傾向朝東,傾角40o之逆斷層,斷層面積評估為216平方公里,最大地震規模為Mw 6.4。(5) 大埔地區深約10-18公里處,存在一向西傾斜,傾角35o之逆斷層,斷層面積為160平方公里,最大地震規模為Mw 6.3。(6) 東南地區深約15-20公里處,存在一向西傾斜,傾角40o之逆斷層,斷層面積評估為36平方公里,最大地震規模為Mw 5.7。
由於台灣西南部深度十公里以下之地震活動相當頻繁,而大量向西傾斜之逆斷層的發育,極可能反應原先存在正斷層之再活動。因此,除了持續對已知活動構造進行監測外,滑脫面(detachment)以下之發震構造亦需進一步之研究,以求台灣西南部地震地體構造研究之完整性。
We analyze earthquake data in southwestern Taiwan from Central Weather Bureau between January 1991 and September 2002 and relocate earthquake locations by using 3D velocity model and double difference location method base on the 1D velocity model of our study area. Using 3D earthquake relocations to determine 283 focal mechanisms (ML≧3.5) and corresponding stress inversions. Finally we estimate earthquake potentials of those seismogenic structures in southwestern Taiwan.
We suggest that: (1) the stress patterns inverted from focal mechanisms exhibit that distributions of σ2 and σ3 axes are random within a shape of belt (girdle) in Chiayi and Rueyli area before Chi-Chi earthquake. The permutations between principal stress axes σ2/σ3 occurred because the horizontal stress decreased after Chi-Chi earthquake. (2) The results of stress inversions were divided into north and south earthquake clusters by N23.4o. The azimuth of principal stress axis σ1 in north cluster is 130o and the σ1 in south cluster is 110o. It appears that the maximum principal stress axes are perpendicular to strikes of local structures. (3) A 30o west-dipping reverse fault in depth of 4~17 km is in south of Chiayi, estimate of fault area is 128 km2 and the largest magnitude is Mw 6.2; a 80o south-dipping strike-slip fault is in north of Chiayi area, estimate of fault area is 500 km2 and the largest magnitude is Mw 6.7. (4) The northern segment of Chukou fault is a 40o east-dipping reverse fault in depth of 0~10 km, estimate of fault area is 216 km2 and the largest magnitude is Mw 6.4. (5), A 35o west-dipping reverse fault is in Dapu area, estimate of fault area is 160 km2 and the largest magnitude is Mw 6.3. (6) A 40o west-dipping reverse fault in depth of 15~20 km is in Southeast area, estimate of fault area is 36 km2 and the largest magnitude is Mw 5.7.
Hypocenteral depths of most earthquakes in southwestern Taiwna are deeper than 10 km according to the relocation results. West-dipping reverse faults are caused by the reactivations of pre-existing normal fault. Therefore, we need to clarify the structures beneath the detachment further, besides monitoring active faults in the upper crust.
中文部分
1.中國石油公司,台灣西部地質圖,嘉義圖幅(1:1000,000),中國石油公司台灣油礦探勘總處編印,1986。
2. 中國石油公司,台灣西部地質圖,台南圖幅(1:1000,000),中國石油公司台灣油礦探勘總處編印,1989。
3. 交通部中央氣象局地震季報,第四十七卷,第一號,2000
4. 王乾盈,呂佩玲,許麗文,以反射震測法調查井下地震附近之地層構造(II),交通部中央氣象局地震測報中心技術報告彙編,第四-一卷,第214-224頁,1993。
5. 王乾盈,比較台灣北部及南部活動斷層在板塊運動上之意義,1999中國地球物理學會成果發表會論文集,第221-226頁,1999。
6. 石瑞銓,方壯剛,辛在勤,黃昭連,地震觀測站站址下之淺層S波速度構造研究,交通部中央氣象局地震測報中心技術報告彙編,第四-一卷,第253-263頁,1993。
7. 辛在勤,呂佩玲和何美儀,地震潛能分析探討,第三屆台灣地區地球物理研討會論文集,第60-70頁,1991。
8. 何美儀,臺灣西部地區三維速度構造,國立中央大學地球物理研究所碩士論文,1994。
9. 吳振名,正斷層復活與構造反轉之砂箱模型實驗,國立中央大學應用地質研究所碩士論文,1996。
10. 林啟文,張徽正,盧詩丁,石同生,黃文正,臺灣活動斷層概論:五十萬分之一臺灣活動斷層分析圖說明書,經濟部中央地質調查所編印,共121頁,2000。
11. 林煌棋,嘉義地區麓山帶地質構造之研究,國立中央大學應用地質研究所碩士論文,1996。
12. 林慶偉、吳炫宗、蕭崇利,嘉義地區活斷層研究:梅山斷層與九芎坑斷層之初步研究,中國地質學會八十八年年會論文集,第279-282頁,1999。
13. 周錦德,陳雄茂,曾煥文,臺灣中西部北港地區之地下構造圈合及其封閉效應,台灣石油地質,第25號,第35-49頁,1989。
14. 邱紹康,張海國,施勝陽,彭達糊,嘉義縣草嶺及大湖背斜重點式地質核查報告,中國石油公司內部報告,1985。
15. 徐兆祥,紀文榮,詹永光,劉傳村,台灣南部嘉義平原區新第三紀地質層對比與儲聚油氣關係之研究,經濟部六十八年度研究發展專題,1979。
16. 姚英傑,黃蕙珠和歐國斌,Seismic distribution of Chiayi earthquake (991022) and aftershocks,第八屆台灣地區地球物理研討會論文集,第216-223頁,2000。
17. 倪偉峰,集集地震前後車籠埔斷層下盤地區地震活動之研究,國立成功大學地球科學研究所碩士論文,共115頁,2003。
18. 畢慶昌,臺灣嘉義梅山地震斷層之橫移斷層特徵,地質,11卷,2期,111-119頁,1991。
19. 黃文紀,嘉南地區地震震源特性之研究,國立中央大學地球物理研究所博士論文,共136頁,1999。
20. 黃國聰,台灣西南部麓山帶構造地形之初步研究,國立中央大學應用地質研究所碩士論文,共114頁,1996。
21. 黃鑑水,劉桓吉,張憲卿,台灣南部觸口斷層之地質調查與探勘研究(一),國科會防災科技報告81-22號,1992。
22. 黃鑑水,劉桓吉,張憲卿,台灣南部觸口斷層之地質調查與探勘研究(二),國科會防災科技報告82-10號,1993。
23. 黃鑑水,張憲卿,劉桓吉,台灣南部觸口斷層之調查與探勘,經濟部中央地質調查所彙刊,第9號,51-76頁,1994。
24. 詹忠翰,利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震,國立中央大學地球物理研究所碩士論文,共108頁,2002。
25. 葉永田和鄭世楠,由歷史地震資料探討1906年梅山地震斷層的分佈,活斷層地球物理探勘計畫八十七年度報告,經濟部中央地質調查所,共32頁,1998。
26. 張建興和辛在勤,1993年地震回顧,中央氣象局氣象學報,第三十九卷,第三期,第202-217頁,1994。
27. 張渝龍,李重毅,林慶偉,翁榮南,徐兆祥,劉名周,正斷層復活、反轉與嘉南麓山帶褶皺衝斷構造之發育,中國地質學會年會論文集,第216-220頁,1995。
28. 張徽正,林啟文,沈勉銘,台灣活斷層概論五十萬分之一台灣地區活動斷層分佈圖說明書,經濟部中央地質調查所,共108頁,1997。
29. 楊耿明,洪日豪,吳榮章和黃旭燦,斷層活動性觀測與地震潛勢評估調查研究:台灣陸上斷層帶地質構造與地殼變形調查研究(1/5)-西南地區(觸口斷層),經濟部中央地質調查所報告第89-4號,共93頁,2001。
30. 楊耿明,洪日豪,饒瑞鈞,吳榮章和黃旭燦,斷層活動性觀測與地震潛勢評估調查研究:台灣陸上斷層帶地質構造與地殼變形調查研究(2/5)-六甲新化地區,經濟部中央地質調查所報告第90-4號,共132頁,2001。
31. 鄭世楠,葉永田,徐明同和辛在勤,台灣十大災害地震圖集,中央氣象局及中央研究院地球科學研究所,共289頁,1999。
32. 鄭宏祺,臺灣西南部台南至屏東地區地質構造之研究,國立中央大學應用地質研究所碩士論文,共92頁,2000。
33. 鄧屬予,臺灣的沉積岩,經濟部中央地質調查所編印,共235頁,1997。
34. 鄧屬予,台灣新生代大地構造,台灣大地構造,中國地質學會、中國地球物理學會聯合出版,第49-93頁,2002。
英文部分
1. Aki, K., and Lee, W. H. K., Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, A homogeneous initial model, J. Geophys. Res., 81, p. 4381-4399, 1976.
2. Aki, K., and Richards, P. G., Quantitative seismology: Theory and Methods, W. H. Freeman and Company, San Francisco, 1980.
3. Angelier, J., Sur l’analyse de measures recueilliés dans des sites faillés: l’utlité d’une confrontation entre les methods dynamiques et cinématiques. C. R. Acad. Sci. Paris (D), 281, 1805-1808, 1975 (Erratum: Ibid., 283, 466, 1976)
4. Angelier, J., Determination of the mean principal direction of stresses for a given fault population, Tectonophysics, 56, T17-T26, 1979.
5. Angelier, J., Tectonic analysis of fault slip data sets, J. Geophys. Res., 89, p. 5835-5848, 1984.
6. Angelier, J., From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol., 11, 37-50, 1989.
7. Angelier, J., Fault slip analysis and paleostress reconstruction, In Continental Deformation (Edit by P. Hancock), 53-100, Pergamon, New York, 1994.
8. Barnes, P. M., Nicol, A., and Harrison, T., Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone, New Zealand, GSA Bull., 114, p. 1379-1405, 2002.
9. Biq, C. C., The Yushan-Hsueshan megashear zone in Taiwan, Proc. Geol. Soc. China, 32, p. 7-20, 1989.
10. Biq, C. C., Another coastal range on Taiwan, Ti-Chih, 12, p. 1-14, 1990.
11. Biq, C. C., The 1999 Chia-I earthquake of Taiwan and the coseismic strike-slip duplexing, CGS, Special Publication, 12, p. 183-190, 2000.
12. Bump, A. P., Reactivation, trishear modeling, and folded basement in Laramide uplifts: implications for the origins of intra-continental faults, GSA TODAY, march, p. 4-10, 2003.
13. Carena, S., Suppe, J., and Kao, H., Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geology, 30, p. 935-938, 2002.
14. Chang, Y. L., Lee, C. I., Lin, C. U., Hsu, C. H. and Mao, E. W., Inversion tectonics in the Fold-Thrust belt of the foothills of Chiayi-Tainan area, southwestern Taiwan, Petrol. Geol. Taiwan, 30, p. 163-176, 1996.
15. Chen, K. C., Hung, B. S., Wen, K. L., Chiu, C. H., Yeh, Y. T., Cheng, S. N., Peng, H. Y., Chang, T. M., Shih, T. C., Shih, R. C., and Lin, C. R., A study of aftershocks of the 17 July 1998 Reuy-Li, Chiayi earthquake, TAO, 10(3), p. 605-618, 1999.
16. Chen, C. H., Wang, W. H., and Teng, T. L., Tectonic implications of 1998, Reuy-Li, Taiwan, earthquake sequence, TAO, 14(1), p. 27-40, 2003a.
17. Chen, C. H., Wang, W. H., and Teng, T. L., A possible causal relationship between the 1998 Ruey-Li sequence and the 1999 Chi-Chi earthquake in Taiwan, Bull. Seiemol. Soc. Am., 93(4), p. 1542-1558, 2003b.
18. Cheng, W. B., Haung, H. C., Wang Chengsung, Wu, M. S., and Hsiuan, T. H., Velocity structure, seismicity, and fault structure in the Peikang High area of western Taiwan, TAO, Vol. 14, No. 1, p.63-83, 2003.
19. Deffontaines, B., Lee, J. C., Angelier, J., Carvalho, J., and Rudant, J. P., New morphoneotectonic data in Taiwan: analyses of digital elevation model, SPOT and Radar images, and geodynamic implications, J. Geophys. Res., 99, B10, p. 20,243-20,266, 1994.
20. Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T., Deramond, J., Lee, J. F., Yu, M. S., and Liew, P. M., Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach, Tectonophysics, 274, p. 61-82, 1997.
21. Dubois A., Odonne, F., Massonnat, G., Lebourg, T., and Fabre R., Analogue modeling of fault reactivation: tectonic inversion and oblique remobilisation of grabens, J. Structural Geology, 24, 1741-1752, 2002.
22. Eberhart-Phillips, D., Local earthquake tomography: earthquake source regions. In Seismic Tomography: Theory a Practice, edited by H. M. Iyer and K. Hirahara, p. 613-643, 1993.
23. Ellsworth, W. L. and Zhonghuai, X., Determination of the stress tensor from focal mechanism data, abstract, Eos Trans. AGU, 61, p. 1117, 1980.
24. Engdahl, E. R., Billington, S., and Kisslinger, C., Teleseismically record seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake, J. Geophys. Res., 94, p. 15481-15489, 1989.
25. Gephart, J. W., and D. W. Forsyth, An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res., 100, p. 22197-22213, 1984.
26. Gephart, J. W., FMSI, A Fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. And Geosci., 16, p. 953-989, 1990a.
27. Gephart, J. W., Stress and the direction of slip on fault planes, Tectonics, 9, p. 845-858, 1990b.
28. Gomberg, J. S., Shedlock, K. M., and Roecker, S. W., The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seism. Soc. Am., 80, p. 1605-1628, 1990.
29. Hardebeck, J. L., and E. Hauksson, Stress orientations obtained from earthquake focal mechanisms: what are the appropriate uncertainty estimates? Bull. Seiemol. Soc. Am., 91, p. 250-262, 2001.
30. Hauksson, E., Earthquakes, faulting, and stress in the Los Angeles basin, J. Geophys. Res., 95, p. 15365-15394, 1990.
31. Ho, C. S., Foothills tectonics of Taiwan, Bull. Geol. Surv. Taiwan, 25, 9-28, 1976.
32. Ho, C. S., An introduction to the geology of Taiwan. Explanatory text of the Geologic map of Taiwan, 2nd ed. Central Geological Survey Taiwan, p.192, 1988.
33. Hsu, C. Y., and Wey S. K., Structural geology in the Chiayi foothills, Taiwan, Petrol. Geol. Taiwan, no. 19, p. 17-28, 1983.
34. Hsu, T. L. and Chang, H. C., Quaternary faulting in Taiwan. Mem. Geol. Soc. China, 3, p.155-165, 1979.
35. Hu, J.-C., Angelier, J., Lee, J.-C., Chu, H.-T. and Byrne, D., Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling. Tectonophysics, 255, p. 243-268, 1996.
36. Hu, J. C., and Angelier, J., Modeling of stress-deformation relationships in a Collision belt: Taiwan, TAO, 7(4), p. 447-465, 1996.
37. Hu, J. C., Angelier, J. and Yu, S. B., An interpretation of the active deformation of southern Taiwan based on numerical simulation and GPS studies. Tectonophysics, 274, p. 145-170, 1997.
38. Hu, J. C., and Angelier, J., 3-D distinct element analysis accounts for stress permutations in brittle tectonics, Program Proceeding of 2001 Joint Geosciences Assembly, p. 60-61, 2001.
39. Hu, J. C., and Angelier, J., Stress permutations: 3-D distinct element analysis accounts for a common phenomenon in brittle tectonics, J. Geophys. Res., revised, 2004.
40. Husen, S., Local earthquake tomography of a convergent margin, north Chile, Zur Erlangung des Doktorgrades, 1999.
41. Hung, J. H., Wiltschko, D. V., Lin, H. C., Hickman, J. B., Fang, P., and Bock, Y., Structure and motion of the southwestern Taiwan fold and thrust belt, TAO, 10, p. 543-568, 1999.
42. Hung, J. H., Zhan, H. P., Wiltschko, D. V., and Fang, P., Geodetically Observed Surface Displacements of the 1999 Chi-Chi Earthquake near Southern Termination of the Chelungpu Fault, TAO, 13, p. 355-366, 2002.
43. Kao, H., and Angelier, J., The Chichi earthquake sequence, Taiwan: results from source parameter and stress tensor inversions, Earth and Planetary Sciences, 333, p. 65-80, 2001a.
44. Kao, H., and Angelier, J., Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional collision, Bull. Seism. Soc. Am., 91(5), p. 1028-1040, 2001b.
45. Kao, H., and Chen, W. P., The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan, Science, 288, p. 2346-2349, 2000.
46. Kao, H., Liu, Y. H., Liang, W. T., and Chen, W. P., Source parameters of regional earthquakes in Taiwan (1999-2000) and data release note for the Chi-Chi earthquake sequence from BATS, TAO, Vol. 13, No. 3, 2002.
47. King, G. C. P., Stein, R. S., and Lin, J., Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, p. 935-953, 1994.
48. Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U., Initial reference models in local earthquake tomography, J. Geophys. Res., 99, p. 19635-19646, 1994.
49. Kissling, E., VELEST user’s guide-short Introduction, Tech. Rep., Institute of Geophysics and Swiss Seismological Service, ETH Zuerich, 1995.
50. Kisslinger, C., Evaluation of S to P amplitude rations for determining focal mechanisms from regional network observation, Bull. Seismol. Soc. Am., 70(4), p. 999-1014, 1980.
51. Kisslinger, C., J. R. Bowman, and K. Koch, Procedures for computing focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70, p. 999-1014, 1981.
52. Lacombe, O., Mouthereau, F., Angelier, J., Beffontaines, D., Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan, Tectonophysics, 333, p.323-345, 2001.
53. Lacombe, O., Mouthereau, F., Basement-involved shortening and deep detachment tectonics in forelands of orogens: Insights from recent collision belts (Taiwan, Western Alps, Pryencees), Tectonics, 21(4), p.1-21, 2002.
54. Letouzey, J., Cenozoic paleo-stress pattern in the Alpine foreland and structural interpretation in a platform basin, Tectonophysics, 132, p. 215-231, 1986.
55. Letouzey, J., Fault reactivation, inversion and fold-thrust belt, in J. Letouzey, ed., Petroleum and Tectonics in Mobile Belts: Technip, Paris, p. 101-127, 1990.
56. Lu, C. Y., Neotectonics in the foreland thrust belt of Taiwan: Petrol. Geol. Taiwan, 29, P.1-26, 1994.
57. Lu, C. Y., Jeng, F. S., Chang, K. J., Jian, W. T., Impact of basement high on the structure and kinematics of the western Taiwan thrust wedge: Insights from sandbox models, TAO, Vol. 9, No. 3, p.533-550, 1998.
58. Liu, G. X., Zhao W. J., Wu X. Y., and Ren W. J., Study on crustal thickness in Taiwan region – preliminary results by 3D gravity inversion, Chinese Science Bulletin, 36, p. 928-931, 1991.
59. Liu, G. X., Zhao W. J., Wu X. Y., and Ren W. J., A study of 3-D gravitational forward calculation of the crustal structure in Taiwan, China, Acta Seism. Sinica, 6, p. 145-155, 1993.
60. McKenzie, D. P., The relation between fault plane solutions and the directions of the principal stress, Bull. Seismol. Soc. Am., 59, p. 591-601, 1969.
61. Michael, A. J., Determination of stress from slip data: faults and fold, J. Geophys. Res., 89, p. 11517-11526, 1984.
62. Michael, A. J., Use of focal mechanisms to determine stress: a control study, J. Geophys. Res., 92, p. 357-368, 1987a.
63. Michael, A. J., Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92, p. 7963-7979, 1987b.
64. Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Brusset, S., Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections, Tectonophysics, 333, p.293-322, 2001.
65. Mouthereau, F., Deffontaines, B., Lacombe, O., Angelier, J., Variations along the strike of the Taiwan thrust belt: basement control on structural style, wedge geometry, and kinematics, Geol. Soc. Am., Special paper, 358, p. 31-54, 2002.
66. Omori, F., Preliminary note on the Formosa earthquake of March 17, 1906, Imp. Earthquake Inves. Comm. Bull., 2, p. 53-69, 1907.
67. Pavlis, G. L., Appraising earthquake hypocenter location errors: a complete, practical approach for single-event location, Bull. Seism. Soc. Am., 76, p. 1699-1717, 1986.
68. Rau, R. J., Flexure modeling and Taiwan tectonics, Master thesis in Geology, State Univ. of New York at Binghamton, 1992.
69. Rau, R. J., 3-D tomography, focal mechanisms, and Taiwan orogeny, ph. D. Thesis in Geology, State Univ. of New York at Binghamton, 1996a.
70. Rau, R. J., Wu, F. T., and Shin, T. C., Regional network focal mechanism determination using 3-D velocity model and SH/P amplitude ratio, Bull. Seism. Soc. Am., 86, p. 1270-1283, 1996b.
71. Rau, R. J., Wu, F. T., Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, TAO, 9(3), p.755-778, 1998.
72. Reasenberg, P. A., and Simpson, R. W., Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, p. 1687-1690, 1992.
73. Shaw, J. H., and Shearer, P. M., An elusive blind-thrust fault beneath metropolitan Los Angeles, Science, 283, p. 1516-1518, 1999.
74. Shaw, J. H., Plesch, A., Dolan, J. F., Pratt, T. L., and Fiore, P., Puente Hills blind-thrust system, Los Angeles, California, Bull. Seism. Soc. Am. 92, p. 2946-2960, 2002.
75. Shearer, P. M., Introduction to seismology, Cambridge Univ. press, p.260, 1999.
76. Snoke, J. A., Munsey, J. W., Teague, A. G., and Bollinger, G. A., A program for focal mechanism determination by combined use of polarity and SV-P amplitude ration data, Earthquake Notes, 55(3), p.15, 1984.
77. Snoke, J. A., Focmec: FOCal MEChanism Determinations, Virginia Tech, p.21, package URL: http://www.geol.vt.edu/outreach/vtso/focmec/, 2002.
78. Suppe, J., Décollement folding in southwestern Taiwan, Petrol. Geol. Taiwan, 13, p.25-35, 1976.
79. Suppe, J., Imbricated structure of western foothills belt, southcentral Taiwan, Petrol. Geol. Taiwan, 17, p.1-16, 1980.
80. Suppe, J., Seismic interpretation of the compressively reactivated normal fault near Hsinchu, western Taiwan, Petrol. Geol. Taiwan, 20, p. 85-96, 1984.
81. Suppe, J., Reactivated normal faults in the western Taiwan fold-and-thrust belt, Geol. Soc. China Mem., 7, p. 187-200, 1986.
82. Suppe, J., The active Taiwan mountain belt, in The Anatomy of Mountain Ranges, edited by J. P. Schaer and J. Rodgers, p. 277-293, Princeton Uuiv. Press, Princeton, 1987
83. Teng, L. S., Geotectonic evolution of Tertiary continental margin basins of Taiwan, Petrol. Geol. Taiwan, 27, p. 1-19, 1992.
84. Thurber, C. H., Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California, J. Geophys. Res., 88, p. 8226-8236, 1983.
85. Tsai, C. C., Loh, C. H., and Yeh, Y. T., Analysis of earthquake risk in Taiwan based on seismotectonic zones, Mem. Geol. Soc. China, 9. p. 433-466, 1987.
86. Waldhauser, F., Ellsworth, W. L., and A. Cole, Slip-parallel seismic lineations along the northern Hayward fault, California, Geophys. Res. Lett. 26, p. 3525-3528, 1999.
87. Waldhauser, F., Ellsworth, W. L., A double-difference earthquake location Algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am. 90, p. 1353-1368, 2000.
88. Wang, C. Y., and Shih, T. C., Illustrating 100 years of Taiwan seismicity, TAO, 9, p. 589-614, 1998.
89. Wells, D. L., and Coppersmith, K. J., New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, p. 974-1002, 1994.
90. Wu, F. T., Rau, R. J., and Salzberg D., Taiwan orogeny: thin-skinned or lithospheric collision, Tectonophysics, 174, p. 191-220, 1997.
91. Yang, M., Rau, R. J., Yu, J. Y., and Yu, T. T., Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan, Earthquake, Earth, Planets and Space, 52, p. 403-413, 2000.
92. Yeh, Y. H., and Tsai, Y. B., Thickness and P-wave velocity of the Miocene to Oligo-Eocene formations in northeastern Taiwan, Bull. Inst. Earth Sci., Aca. Sinica, 1, p. 103-110, 1981.
93. Yeh, Y. H., Shih, R. C., Lin, C. H., Liu, C. C., Yen, H. Y., Huang, B. S., Liu, C. S., Chen, P. Z., Huang, C. S., Wu, C. J., and Wu, F. T., Onshore / offshore wide-angle deep seismic profiling in Taiwan, TAO, 9(3), p. 301-316, 1998.
94. Yu, S. B., and Chen, H. Y., Strain accumulation in Southwestern Taiwan, TAO, 9(1), p. 31-50, 1998.
95. Zoback, M. L., First- and second-order patterns of stress in the lithosphere: The world stress map project, J. Geophys. Res., 97, p. 11703-11728, 1992.