| 研究生: |
陳美宏 Chen, Mei-Hung |
|---|---|
| 論文名稱: |
利用NBO的理論計算來研究離子液體與溶劑分子間的作用關係(二) Studies of the interaction between ionic liquid and solvents by Natural Bond Orbital method (II) |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氫鍵 、穩定能 、二級微擾 、天然鍵性軌域 、理論計算 、離子液體 |
| 外文關鍵詞: | E(2), Stability Energy, heoretical calculation, ionic liquid, hydrogen-bond, NBO |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在純離子液體狀態下,可以觀察到陰陽離子各自擴散的情形,但最近亦有研究陽離子中1H及19F 的NMR 光譜論文指出,在不同的溫度及不同的有機溶劑含量下,發現離子液體中,超陰離子(hyper anion preference, HAP)的現象多於超陽離子的情形。
究竟是何者在主導離子液體和溶劑分子間的相對作用,以及超陽子或超陰離子的情形,是本論文所要探討的主要研究動機。我們利用 B3LYP/6-31G* 的方法來計算溶劑分子和陰陽離子間的結合能傾向,並利用計算所得的 E(2) 值來解釋 NMR 實驗所得的 1H 及 19F 之T1(遲緩時間)測定的結果。
本論文第一部份(加入溶劑至融鹽系統中)的計算結果與NMR實驗的結果相符,且若將末端碳接三個氫原子的醇類溶劑(簡稱“末端氫未被氟化的醇類”)的末端碳上所接的三個氫原子以三個氟原子取代(簡稱“末端氫被氟化的醇類”),則在整體上看來,對於融鹽系統的結構有穩定的作用。但在將終端碳上接三個氫原子且官能基為 NO2 的溶劑(簡稱“末端氫未被氟化的硝基烷類”)終端碳上的三個氫原子以氟原子取代時(簡稱“末端氫被氟化的硝基烷類”),結果卻有逆轉的趨勢。在論文第二部份(超離子情形)的理論計算結果並無法解釋 NMR 實驗之結果,對此無法解釋的現象我們能以如下的公式來解釋:
G =H-TS ……… (1)
當 G = 0 時,H = TS
T = H / S ……… (2)
其中,H 即為理論計算所得的穩定能(SE),但由上面公式(2)可見,溫度 (T) 與亂度 (S) 呈反比,而與 H 呈正比。然而在超陰離子及超陽離子的情形下,H 值並沒有多大的差別,所以我們可以下一個結論:氣態下的離子液體,事實上受到entropy change (熵,S) 的影響較大。
Under the neat ionic liquid condition, it is observed that the cation and anion diffused respectively. In recently, there were also papers about cation’s 1H and 19F NMR spectrum pointed out that the HAP (hyper anion preference) is more than the HCP (hyper cation preference) under the different temperature and the different organic solvent ratio.
Which reason actually affects the intermolecular relative function in the ionic liquid and the solvent? And which reaslly affects the hyper anion preference, is the major research motive of this paper. We use the B3LYP/6-31G* method to calculate the solvent molecule and binding energy tendency between the cation and anion. And using the computational E(2) value to explaine the NMR experimental T1-19F and T1-1H results (relaxation time). The first part of this paper (adding solvents to the ionic liquid system), the computational results meet the NMR experimental results. In the second part of this paper (hyper ion preference), the theoretical calculation results are unable to explain the results of the NMR experiment. Regarding this unable explained phenomenon, we try to use the following formula to explain that,
G = H-TS ……… (1)
When G = 0, H = TS
T = H/S ……… (2)
Where, H is equal to the theoretical calculated stability energy (SE). In formula 2, the temperature (T) is inverse proportion with entropy change (S) but direct proportion with enthalpy change (H). Thought the calculated H values have not much difference between hyper anion and hyper cation, we explain that regarding the next conclusion: Under the gaseous state ionic liquid, the entropy change (S), in fact, is the most influence.
1.A. Noda, K. Hayamizu, M. Watanabe; J. Phys. Chem. B., 2001, 105, 4603-4610.
2.A.E. Reed, L.A. Curtiss, F. Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 1988, 88, 899-926
3.C. J. Margulis, H. A. Stern, and B. J. Berne; J. Phys. Chem. B.,2002, 106, 12017-12021
4.H. Tokuda, K. Hayamizu, K. Ishii, Md. A. BH Susan and M. Watanabe; J. Phys. Chem. B., 2004, 108, 16593-16600.
5.H. Tokuda, K. Hayamizu, K. Ishii, Md. A. BH Susan and M. Watanabe; J. Phys. Chem. B., 2005, 109, 6103-6110.
6.H. Tokuda, K. Ishii, Md. A. BH Susan, S. Tsuzuki, K. Hayamizu and M. Watanabe; J. Phys. Chem. B., 2006, 110, 2833-2839.
7.Hagiwara, R.; Ito, Y. J. Fluorine Chem., 2000, 105, 221
8.Happer, J. B. and R. M. Lynden Bell; Mol Phys, 2004, 102(1): 85-94
9.Joep van den Broeke, Ferry Winter, Berth-Jan Deelman, and Gerard van Koten; Organic Letters, 2002, Vol. 4, No. 22, 3851-3854
10.Kristin A. Fletcher, Isaiah A. Storey, Ashley E. Hendricks, Shubha Pandey and Siddharth Pandey; Green Chemistry, 2001, 3, 210–215
11.PIAO, L. Y. ; FU, X. ; YANG, Y. L.; TAO, G. H.; KOU, Y.; Chinese J Cata, 2004, 25(1): 44-48
12.Po-Yu Chen; Chemistry, Vol.64, No.2, 2006, 235-258
13.S. Tsuzuki, H. Tokuda, K. Hayamizu, and M. Watanabe, J. Phys. Chem. B., 2005, 109, 16474-16481
14.T. Umecky, M. Kanakubo and Y. Ikushima; Fluid Phase Equilibria, 2005, 228-229, 329-333.
15.Urahata, S. M. and M. C. C. Ribeiro; J Chem Phys., 2004, 120(4): 1855-1863
16.Urszula Doman’ska; Pure Appl. Chem., Vol. 77, 2005, No. 3, 543–557
17.Yan, T; Burnham, C J; Del Popolo, M G; Voth, G A; J. Phys. Chem. B., 2004, 108(32), 11877-11881
18.McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L. J. Electrochem. Soc. 1999, 146, 1687-1695.
19.Seddon, K. R.; Stark, A.; Torres, M.-J. Viscosity and Density of 1-Alkyl-3-methyl-imidazolium Ionic Liquids. In Clean SolVents; Abraham, M. A., Moesn, L., Eds.; ACS Symposium Series No. 819; American Chemical Society: Washington, DC, 2002; 34-49.
20.Suarez, P. A. Z.; Einloft, S.; Dukkius, J. L.; de Souza, R. F.; Dupont, J. J. Chim. Phys. 1998, 95, 1626-1639.
21.Larive, C. K. Lin, M.; Piersma, B. J.; Carper, W. R. J. Phys. Chem. 1995, 99, 12409-12412.
22.Carper, W. R.; Mains, G. J.; Piersma, B. J.; Mansfield, S. L.; Larive, C. K. J. Phys. Chem. 1996, 100, 4724-4728.
23.Larive, C. K.; Lin, M.; Kinnear, B. S.; Piersma, B. J.; Keller, C. E.; Carper, W. R. J. Phys. Chem. 1998, 102B, 1717-1723.
24.Keller, C. E.; Piersma, B. J.; Carper, W. R. J. Phys. Chem. 1995, 99, 12998-13001.
25.Carper, W. R. Molten Salts. In Encyclopedia of Nuclear Magnetic Resonance; Grant, D. M., Harris, R. K., Eds.; Wiley: New York, 1996; pp 3105-3109.
26.Carper, W. R. Recent Developments in Multinuclear NMR Relaxation Studies of Viscous Solutions. In Recent Research Developments in Physical Chemistry; Transworld Research Network: Kerala, India, 1997; Vol. 1, pp 73-85.
27.Antony, J. H.; Mertens, D.; Do¨lle, A.; Wasserscheid, P.; Carper, W. R. Chem Phys Chem. 2003, 4, 588-594.
28.Do¨lle, A.; Carper, W. R. Rotational Diffusion. In Ionic Liquids for Synthesis; Welton, T., Wasserscheid, P., Eds.; John Wiley: New York, 2002; pp 168-173.
29.P. Walden, Bull. Acad. Imper. Sci.(St. Petersburg), 1914, 1800.
30.J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorg. Chem., 1982, 21, 1263.
31.E. I. Cooper, E. J. M. O’ Sullivan, in” Proceeding of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceeding”, PV92-16, R. J. Gale, G. Blomgren and H. Kojima, Editors, PP. 386, J. Electrochem. Soc., Pennington, NJ(1992).
32.Allerhand, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1963, 85, 1715.
33.(a) Budeˇsˇinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858. Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167.
(b) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H.- D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180. Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560.
(c) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.
34.(a )Hobza, P.; Sÿpirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501.
(b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447.
35.A. E. Reed and F. Weinhold; J. Chem. Phys., 78, 4066(1983).
36.Hobza, P.; Havlas, Z. Chem. ReV. 2000, 100, 4253.
37.(a) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10 607.
(b) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784.
38.(a) An Appraisal of Valence-Bond Structures and Hybridization in Compounds of The First-Row Elements. Bent, H. A. Chem. ReV. 1961, 61, 275.
(b) For selected applications of Bent’s rule, see: Baldridge, K. K.; Siegel, J. S. Chem. ReV. 2002, 124, 5514. Lemke, F. R.; Galat, K. J. Youngs, W. J. Organometallics 1999, 18, 1419. Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648. Palmer, M. H. J. Mol. Struct. 1997, 405, 179. Palmer, M. H. J. Mol. Struct. 1997, 405, 193. Jonas, V.; Boehme, C.; Frenking G. Inorg. Chem. 1996, 35, 2097. Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201. Kaupp, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1993, 115, 1061. Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981. Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. (THEOCHEM) 1991, 80, 247. For the limitations of Bent’s rule in treating organometallic compounds see: Kaupp, M. Chem. Eur. J. 1999, 5, 3631.
39.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Gaussian, Inc., ittsburgh, PA, 1998.
40.Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
41.Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
42.Weeny, R. M.;Dierksen, G. J. Chem. Phys. 1968, 49, 4852.
43.(a) Hohenberg, P.;Kohn, W. Physical Review 1964, 136, B864.
(b) Kohn, W.;Sham, L. J. Physical Review 1965, 140, A1133.
(c) Salahub, D. R.;Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
(d) Parr R. G.;Yang W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
44.A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
45.Becke, A. D. Phys. Rev. 1988, A38, 3098.
46.C. Lee, W. Yang, and R. G. Parr, Phys Rev. B., 1988, 37, 785.
47.M. S. Gordon, J. S. Binkley, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc., 1982 104, 2797.
48.Reed, A. E.;Weinstock R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
49.(a) A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev, 1988, 88, 899.
(b) A. E. Reed and F. Weinhold; J. Chem. Phys., 1986, 84, 5687.
(c) F. Weinhold; J. Mol. Struct. (Theochem), 1997, 181, 398.
(d) N. W. Mitzel and U. Losehand; J. Am. Chem. Soc., 1998, 120, 7320.
(e) P. Hobza, J. Šponer, E. Cubero, M. Orozco and F. J. Luque; J. Phys. Chem. B., 2000,104, 6286.
(f) N. B. Wong, Y. S. Cheung, D. Y. Wu, Y. Ren, X. Wang, A. M. Tian and W. K. Li; J. Mol. Struct. (Theochem), 2000, 507, 153.
(g) B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko and P. Hobza; J. Phys. Chem. A, 2001, 105, 5560.
(h) S. P. Ananthavel and M. Manoharan; Chem. Phys., 2001, 269, 49.
(i) C. Aubauer, T. M. Klapotke and A. Schulz; J. Mol. Strust. (Theochem), 2001, 543, 285.
(j) W. Yang and D. G. Drueckhammer; J. Am. Chem. Soc., 2001, 123, 11004.
(k) H. Anane, A. Boutalib, I. Nebot-Gil and F. Tomas; J. Phys. Chem. A, 1998, 102, 7070. 7. S. V. Dzyuba and R. A. Barts
50.Reed, A. E.;Weinstock R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
51.(a) Reed, A. E.;Weinhold, F. J. Chem. Phys. 1986, 84, 5687.
(b) Reed, A. E.;Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899.
(c) Weinhold, F. J. Mol. Struct., (Theochem) 1997, 181, 398.
(d) Mitzel, N. W.;Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320.
(e) Goodman, L.;Pophristic, V.;Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
(f) Hobza, P.;Sponer, J.;Cubero, E.;Orozco, M.;Luque, F. J. J. Phys. Chem. B. 2000, 104, 6286.
(g) Reimann, B.;Buchhold, K.;Vaupel, S.;Brutschy, B.;Havlas, Z.;Spirko, V.;Hobza, P. J. Phys. Chem. A. 2001, 105, 5560.
52.劉挺緯; 國立成功大學碩士論文. 2006
53.鄭國志; 國立成功大學碩士論文. 2006
54.張家航; 國立成功大學碩士論文. 2006
55.鄧靜宜; 國立成功大學碩士論文. 2003
56.沈桓儀; 國立成功大學碩士論文. 1999