| 研究生: |
黃彥文 Huang, Yen-wen |
|---|---|
| 論文名稱: |
矯正用骨板之生物力學分析:3D有限元素法 Biomechanical Analysis of the Orthodontic Bone Plate: Three-dimensional Finite Element Analysis |
| 指導教授: |
張志涵
Chang, Chih-Han 劉佳觀 Liu, Jia-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 矯正骨板 、有限元素 、錨定 |
| 外文關鍵詞: | finite element method (FEM), anchorage, bone plate |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錨定對於牙齒矯正計畫的訂定有著深遠的影響,錨定的喪失會造成某些牙齒發生移動,進而影響整個矯正治療的結果。矯正用骨板可以提供齒列矯正時一個絕對的錨定力量使得整個治療更有效率,對於矯正的結果也更加能夠被預期。在使用矯正骨板時有些因素會影響到矯正骨板的成功率,這些因素包括骨板的型態、皮質骨的厚度、骨釘長度及植入的深度、力量的大小、力量的方向、骨釘的數目、以及骨頭本身的狀況。回顧過去研究,目前並沒有任何的研究針對這些影相因素做一個生物力學方面的探討。所以本實驗的目的,利用有限元素的方式對於這些可能影響矯正骨板的幾個因素做一個生物力學的探討和比較,並且比較骨板與骨釘生物力學的異同。最後分析結果,期望給臨床醫師在使用矯正骨板時的一個參考。實驗中,先收集相關臨床資料共計12位患者,分析其目的結果並利用這些資料建立分析模型及參考變數,隨後利用3D有限元素的方式來分析影響矯正骨板成功的因素。在模擬部分,參考臨床上可能的狀況先改變了幾個參數,包括骨板形狀、皮質骨的厚度、骨釘長度及數量、施力的大小及方向以及模擬臨床上骨板可能被彎折的狀況來觀察其對整個系統在應力及形變的差異。從模擬結果可發現各結構中應力都集中在接近骨釘的區域。在各變數中施力的方向是影響應力表現最重要的一個因素,施力方向平行骨板長軸時應力值最小,Y及T骨板在較I及L骨板有較佳的應力表現,應力隨著施力增大而等比增加,骨釘數量增加可降低最大應力值。在目前設定下骨釘長度及皮質骨的厚度的變化對於應力的變化並沒有決定性的影響。在與骨釘的比較中骨板為較佳的選擇,如果患者骨條件好且盡量減少骨釘露出的量,此時選用何種系統就沒有太多的差異性。另外根據研究及臨床運用,設定最常見的狀況:皮質骨厚度1.75mm以及6mm骨釘露出量,在這條件下選用骨板會有較佳的表現,尤其當施力平行於骨板長軸時差異性尤為明顯。根據實驗的結果,在選用骨性錨定時,施力方向、骨板種類的選擇會影響到應力的大小,而患者皮質骨條件及骨釘露出量決定臨床上骨釘或骨板系統的選擇
Anchorage plays an important role in the planning of tooth movement for orthodontic treatment. Unwanted tooth movement known as loss of anchorage can be a determinate effect on the treatment outcome. The bone plate can provide an absolute anchorage, and allow treatment to proceed more effectively with more predictable results. With bone plate as the orthodontic anchorage, some biomechanical factors could influence its success rate such as: type of bone plate, thickness of cortical bone, screw length, screw implanted depth, orthodontic force magnitude, force direction, screw number, and bone quality. Unfortunately, there were limited studies focused on these biomechanical factors. The purpose of this study is to analyze the biomechanical factors which influence the bone plate success rate by using finite element simulation. In this study, we collect the data form twelve patients who had bone plate as orthodontic anchorage to intrude teeth and move posterior teeth or full arch teeth distally at the NCKUH since 2004. Then, we set up the model and variation according to these data. The biomechanical influences of success factors on bone plate were quantified by using the three-dimensional finite element method (FEM). In the FEM analysis, we found that stress in all structure was concentrated around the screw. Different type of bone plate, different direction and magnitude of force, screw number and plate bending influenced the stress distribution. The screw length and thickness of cortical bone effect were not significant to influence the peak value of the stress. In comparing between miniscrew and bone plate, the bone plate system was better than miniscrew system, but if the patient had thick cortex with short screw exposure length there were no significant different between the two systems. The setting of miniscrew system used in maxillary with 1.75mm cortical bone and 6mm screw exposure length was closed to average situation and the stress in this setting was larger than bone plate system. According to this study, the force direction and the plate type influence the stress value and the cortical bone thickness and screw exposure length determinate what system should we chose
Alkan A, Metin M, Muğlali M, Ozden B, Celebi N. Biomechanical comparison of plating techniques for fractures of the mandibular condyle. Br J Oral Maxillofac Surg. 2007;45(2):145-9.
Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil. 1998;25(11):847-58.
Baumgaertel S, Razavi MR, Hans MG.. Mini-implant anchorage for the orthodontic practitioner. Am J Orthod Dentofacial Orthop. 2008 ;133(4):621-7.
Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop. 1995;107(3):251-8.
Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16(4):473-9
Chen CH, Hsieh CH, Tseng YC, Huang IY, Shen YS, Chen CM. The use of miniplate osteosynthesis for skeletal anchorage. Plast Reconstr Surg. 2007;120(1):232-7.
Chen F, Terada K, Hanada K, Saito I. Anchorage effect of osseointegrated vs nonosseointegrated palatal implants. Angle Orthod. 2006;76(4):660-5.
Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants. 2004;19(1):100-6.
Choi BH, Zhu SJ, Kim YH. A clinical evaluation of titanium miniplates as anchors for orthodontic treatment. Am J Orthod Dentofacial Orthop. 2005;128(3):382-4.
Cornelis MA, Scheffler NR, Nyssen-Behets C, De Clerck HJ, Tulloch JF. Patients' and orthodontists' perceptions of miniplates used for temporary skeletal anchorage: a prospective study. Am J Orthod Dentofacial Orthop. 2008;133(1):18-24.
Cornelis MA, Scheffler NR, De Clerck HJ, Tulloch JF, Behets CN. Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am J Orthod Dentofacial Orthop. 2007;131(4 Suppl):S52-8.
Costa A , Pasta G, Bergamaschi G. Intraoral hard and soft tissue depths for temporary anchorage devices. Seminars in Orthodontics, 2003;11(1):10–5.
Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg. 1998;13(3):201-9.
Cox T, Kohn MW, Impelluso T. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures. J Oral Maxillofac Surg. 2003;61(4):481-7.
Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod. 1983;17(4):266-9.
Erkmen E, Simşek B, Yücel E, Kurt A. Comparison of different fixation methods following sagittal split ramus osteotomies using three-dimensional finite elements analysis. Part 1: advancement surgery-posterior loading. Int J Oral Maxillofac Surg. 2005;34(5):551-8.
Feledy J, Caterson EJ, Steger S, Stal S, Hollier L. Treatment of mandibular angle fractures with a matrix miniplate: a preliminary report. Plast Reconstr Surg. 2004;114(7):1711-6.
Feller KU, Schneider M, Hlawitschka M, Pfeifer G, Lauer G, Eckelt U. Analysis of complications in fractures of the mandibular angle--a study with finite element computation and evaluation of data of 277 patients. J Craniomaxillofac Surg. 2003;31(5):290-5.
Fernández JR, Gallas M, Burguera M, Viaño JM. A three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates. J Biomech. 2003;36(3):329-37.
Gallas MM, Abeleira MT, Fernández JR, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12-6.
Gallas MM, Abeleira MT, Fernández JR, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12-6.
Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85(6):585-98.
Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30(4):223-33.
Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85(6):585-98.
Haug RH. The effects of screw number and length on two methods of tension band plating. J Oral Maxillofac Surg. 1993;51(2):159-62.
Huang LH, Shotwell JL, Wang HL. Dental implants for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2005;127(6):713-22.
Jenner JD, Fitzpatrick BN. Skeletal anchorage utilizing bone plates. Aust Orthod J. 1985;9:231–3.
Kim JW, Baek SH, Kim TW, Chang YI. Comparison of Stability between Cylindrical and Conical Type Mini-Implants. Angle Orthod. 2008;78(4):692-8.
Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J. 2005;24(2):219-24.
Korkmaz HH. Evaluation of different miniplates in fixation of fractured human mandible with the finite element method. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(6):e1-13.
Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop. 2007;131(4 Suppl):S43-51.
Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131(1):9-15.
Linkow LI. The endosseous blade implant and its use in orthodontics. Int J Orthod. 1969;7(4):149-54.
Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234-40.
Londa G. The Anchorage Quality of Titanium Microplates with Short Microscrews for Orthodontic Anchorage Applications. J Orofac Orthop. 2005;66(1):67-77.
Lovald ST, Wood TKJ, Wagner J, Baack B, Kelly J. Finite Element Analysis of SCREW-PLATE Systems for Fixation of Parasymphyseal Fractures of the mandible. Journal of Mechanics, 2007;23(1):69-77.
Nanda R. Biomechanical and esthetic strategies in clinical orthodontics Chapter 15
Maurer P, Holweg S, Schubert J. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J Craniomaxillofac Surg. 1999;27(6): 365-372
McGuire MK, Scheyer ET, Gallerano RL. Temporary anchorage devices for tooth movement: a review and case reports. J Periodontol. 2006;77(10):1613-24.
Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res. 2004;15(2):239-48
Melsen B. Mini-implants: Where are we? J Clin Orthod. 2005;39(9):539-47.
Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 3, 2000:23–28
Melsen B, Verna C Miniscrew implants: The Aarhus anchorage system. Seminars in Orthodontics, 2003;11(1):24-31B.
Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57(6):700-8.
Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospective, biomechanical, and imaging study. Bone. 2005;37(6):776-80.
Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124(4):373-8.
Moon CH, Lee DG, Lee HS, Im JS, Baek SH. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008;78(1):101-6.
Motoyoshi M, Yano S, Tsuruoka T, Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res. 2005;16(4):480-5.
Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007;22(5):779-84.
Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg. 2008;37(4):334-40.
O'Mahony AM, Williams J L, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res. 2000; 11(5):415-21.
O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res, 2001;12(6):648-57.
Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(5):e6-15.
Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130(1):18-25.
Park YC. Efficient Application and future prospects of miniscrew Implants. The PCSO Annual Session, September 21, 2004.
Pilliar RM, Deporter DA, Watson PA, Valiquette N. Dental implant design--effect on bone remodeling. J Biomed Mater Res. 1991;25(4):467-83.
Prabhu J, Cousley RR. Current products and practice: bone anchorage devices in orthodontics. J Orthod. 2006;33(4):288-307.
Quinn RS, Yoshikawa DK. A reassessment of force magnitude in orthodontics.
Am J Orthod. 1985;88(3):252-60.
Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995;10(3):326-34.
Roberts-Harry D, Sandy J Orthodontics. Part 9: anchorage control and distal movement. Br Dent J 2004;196(5): 55-63.
Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod. 1984;86(2):95-111.
Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120(3):252-77.
Sherwood KH, Burch JG. Skeletally based miniplate supported orthodontic anchorage. J Oral Maxillofac Surg. 2005;63(2):279-84.
Sütpideler M, Eckert SE, Zobitz M, An KN. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants. 2004;19(6):819-25.
Sugawara J, Nishimura M. Minibone plates: The skeletal anchorage system. Seminars in Orthodontics 2003;11(1):47-56.
Stegaroiu R, Watanabe N, Tanaka M, Ejiri S, Nomura S, Miyakawa O. Peri-implant stress analysis in simulation models with or without trabecular bone structure. Int J Prosthodont. 2006;19(1):40-2.
Uckan E, Ak, S, Uckan S. Keypour H. A Three Dimensional Numerical Interaction Model for the Fixation of Mandibular Fractures. 2001;Proceedings of the 23rd Annual EMBS international conference:1511-1514.
Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin. 2006;9(4):257-70.
Wagner A, Krach W, Schicho K, Undt G, Ploder O, Ewers R. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):678-86.
Wang YC, Liou EJ. Comparison of the loading behavior of self-drilling and predrilled miniscrews throughout orthodontic loading. Am J Orthod Dentofacial Orthop. 2008;133(1):38-43.
Wehrbein H, Göllner P. Skeletal anchorage in orthodontics: basics and clinical application. J Orofac Orthop. 2007;68(6):443-61.
Wehrbein H, Merz BR, Diedrich P, Glatzmaier J. The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res. 1996;7(4):410-6.
Wilmes B, Ottenstreuer S, Su YY, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop. 2008;69(1):42-50.
Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop. 2006;67(3):162-74.
Ziębowicz A, Marciniak J. The use of miniplates in mandibular fractures—biomechanical analysis. Journal of Materials Processing Technology 2006;175(1-3):452–6.