| 研究生: |
李宗祐 Lee, Tsung-Yu |
|---|---|
| 論文名稱: |
應用階層式檢查生成法則發展於故障診斷諮詢系統
-以半導體研磨液供應系統之幫浦故障為例 Applying Hierarchical Censored Production Rule(HCPR)-based system to fault diagnosis advisory system : A case study of pump fault of the slurry supply system at the semiconductor foundry |
| 指導教授: |
蔡長鈞
Tsai, Chang-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 階層式檢查生成規則 、規則推論 、故障診斷 |
| 外文關鍵詞: | Fault diagnosis, Hierarchical Censored Production Rule (HCPR)-bas |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著高科技的進步,在半導體工廠中一直扮演著有如身體中的淋巴系統散佈於全廠任一環節中的廠務系統,其工程人員的緊急維修應變能力是最需被注重的,一旦錯過系統故障維修的黃金時間,將面臨全廠性停產的重大影響。
目前工程人員在面對系統設備故障診斷問題時,僅能依靠維修經驗的累積或是參考維修手冊等方式,來找出系統故障原因,且員工的流動頻繁,使得企業面臨著資深員工培養不易,維修手冊使用率偏低的情況。近年來由於專家系統的發展已有相當的成果,有不少的研究利用專家系統建構來輔助維修人員進行故障診斷,也都有不錯的成效,故障診斷技術在機械工程領域的應用非常廣泛,其中在汽車故障診斷領域中的應用最具代表性。但應用在半導體廠務大宗化學供應系統之故障診斷系統的建構過程中,系統建構者卻往往面臨著知識擷取困難及決策分析可靠度等問題,有鑑於此,本研究採用階層式檢查生成規則HCPR,它可以幫助系統建構者更條理的建構故障診斷諮詢系統知識庫,亦可以縮短系統規則的搜尋時間。
另外,驗證本研究之故障診斷系統在實務應用的可行性,以軟體Visual Basic 6.0建立一套『半導體廠務大宗化學供應系統故障診斷諮詢系統』,以利日後維護人員能在短時間內掌握機器故障的原因,進而迅速達成故障排除的工作,並可依賴此系統具備的決策精確度,同時提供廠區備料情況與相關廠商資料,以強化人員對系統的掌控能力,降低運轉上的風險。
Most of engineers who are employed at a semiconductor foundry only depend on the accumulation of maintain experience or consult manual books to find out trouble reasons and the staff's loyalty to the company not never wavered. Thus it is difficult to make enterprises toward staff's training. A fault diagnosis technology has been established in expert system.
But knowledge engineer is difficult to construct knowledge and analyses reliability problem from knowledge data. In view of this issue, our research adopts hierarchical censored production rule (HCPR)-based system to help knowledge engineer build a systematic fault diagnosis advisory system. This system would strengthen personnel's ability of controlling to the system and reduce the risk of operating.
In order to test and verify this fault diagnosis advisory system, we establish an application software by Visual Basic. We also arrange an experimental design to make an efficiency analysis. These results would prove that this fault diagnosis advisory system is suitable to made great progress for novices.
1.Al-Maqaleh, B. M. and Bharadwaj, K.K., ”Genetic
Programming Approach to Hierarchical Production Rule
Discovery”, Transactions on Engineering, Computing and
Technology , 6, 271-274, 2005.
2.Bharadwaj, K.K. & Varshneya, R., ”Parallelization of
Hierarchical Censored Production Rules”, Information and
Software Technology, 37, 453-460, 1995.
3.Bharadwaj, K.K. and Al-Maqaleh, B. M., “Evolutionary
Approach for Automated Discovery of Censored Production
Rules”, Transactions on Engineering, Computing and
Technology , 10, 147-152, 2005.
4.Bharadwaj, K.K. and Jain, N.K., ”Hierarchical Censored
Production Rules( HCPRs) System”, Data & Knowledge
Engineering, 8, 319-344, 1992.
5.Bharadwaj, K.K. and Kendal, R., “Cumulative Learning Based
on Dynamic Clustering of Hierarchical Production
Rules(HPRs)”, Transactions on Engineering, Computing and
Technology , 8, 333-338, 2005.
6.Duan, Y., Edward D., Edward, J.S., & Xu, M.X., “Web-based
Expert Systems: Benefits and Challenges”, Information &
Management, 42, 799-811, 2005.
7.Fu, Z., Xu, F., Zhou, Y., & Xiao, S.Z., “Pig-vet: A
Web-based Expert System for Pig Disease Diagnosis”, Expert
Systems with Applications, 29, 93–103, 2005.
8.Gordon, J. L., “Creating Knowledge Maps by Exploiting
Dependent Relationships”, Knowledge-Based Systems, 13,
71-79, 2000.
9.Hu, W., Starr, A. G., & Leung, A. Y. T., “Operation Fault
Diagnosis of Manufacturing Systems”, Joumal of Materials
Processing Technology, 133, 108-117, 2003.
10.Jabin, S. and Bharadwaj, K.K., “Learning Classifier
Systems Approach for Automated Discovery of Censored
Production Rules”, Transactions on Engineering, Computing
and Technology , 14, 295-300, 2005.
11.Jain, N.K. and Bharadwaj, K.K., “Some Learning Techniques
in Hierarchical Censored Production Rules( HCPRs)
System”, International Journal of intelligent systems,
13, 319-344, 1998.
12.Jose, D.S.d.S. and Bharadwaj, K.K., “Integration of
Hierarchical Censored Production Rules (HCRPs) System and
Neural Networks”, Proceedings of IEEE Computer Society,
73-78, 1998.
13.Kendal, R. and Bharadwaj, K.K., “A Cumulative Learning
Approach to Data Mining Employing Censored Production
Rules”, Transactions on Engineering, Computing and
Technology, 7, 294-298, 2005.
14.Kilagiz, Y., Baran, A., Yildiz, Z., & Çetin, M., “A Fuzzy
Diagnosis and Advice System for Optimization of Emissions
and Fuel Consumption”, Expert Systems with Applications,
28, 305-311, 2005.
15.Liao, S. H., “Expert System Methodologies and
Applications—A Decade Review from 1995 to 2004”, Expert
Systems with Applications, 28, 93–103, 2005.
16.Michalski, R.S. and Winston, P.H., “Variable Precision
Logic”, Artificial Intelligence, 29, 121-146, 1986.
17.Mohamed, E. A., Abdelaziz, A. Y. & Mostafa A. S., “A
Neural Network-based Scheme for Fault Diagnosis of Power
Transformers”, Electric Power Systems Research , 75,
29-39, 2005.
18.Su, K. W., Hwang, S. L., & Liu, T. H., “Knowledge
Architecture and Framework Design for Preventing Human
Error in Maintenance Tasks”, Expert Systems with
Applications, 19, 219-228, 2000.
19.Su, K. W., Liu, T. H., & Hwang, S. L., “A Developed Model
of Expert System Interface (DMESI)”, Expert Systems with
Applications, 20, 337-346, 2001.
20.Su, K. W., Hwang S. L., & Chou Y. F., “Applying Knowledge
Structure to The Usable Fault Diagnosis Assistance System:
A Case Study of Motorcycle Maintenance in Taiwan”, Expert
Systems with Applications, 31, 370-382, 2006.
21.Wang, H. C., and Wang, H. S., “A Hybrid Expert System for
Equipment Failure Analysis”, Expert Systems with
Applications, 28, 615–622, 2005.
22.Yang, B. S., Han, T., Kim, Y. S., “Integration of
ART-Kohonen Neural Network and Case-based Reasoning for
Intelligent Fault Diagnosis”, Expert Systems with
Applications, 26, 387–395, 2004.
23.Yang, B. S., Jeong, S. K., Oh, Y.M., & Tan, A. C. C.,
“Case-based Reasoning System With Petri Nets or Induction
Motor Fault Diagnosis”, Expert Systems with Applications,
27, 301-311, 2004.