簡易檢索 / 詳目顯示

研究生: 陳遵旭
Chen, Tsun-Hsu
論文名稱: 由微振動訊號辨識力學系統之參數
Parametric identification via ambient vibration signals for mechanical systems
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 173
中文關鍵詞: 隨機遞減自回歸向量高屏溪斜張橋自然頻率阻尼比
外文關鍵詞: Random decrement technique, Autoregressive vector, Kao-Ping-Hsi cable-stayed bridge, Natural frequency, Damping ratio
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受環境影響的隨機訊號,在不知道外力大小的情況下能夠確定系統參數。在土木工程中,建築物的系統參數,如勁度、阻尼,經由記錄的訊號能夠近似的被評估出來。同樣的想法能應用在熱燥動的情況下測量奈米尺度的物件。在本研究中,自然頻率與阻尼比來當作結構體的力學指標。運用有限元模擬軟體COMSOL,模擬一受高斯白噪音下的懸臂樑來展現計算方法,例如隨機遞減法。接著在一兩個自由度系統受白噪作用進行驗證分析,然後運用高屏溪斜張橋的位移訊號和隨機遞減法和Ibrahim時域法 (ITD) 來進行分析,在自回歸向量 (ARV) 的解析下,這兩種方法都能夠有相似的自然頻率和阻尼比。

    Random signals, from environmental vibrations, enable determination of system parameters without knowing input force. In civil engineering, system parameters, such as stiffness and damping ratio, of structures can hence be approximately estimated through output-only recordings. The same idea can be applied to measure mechanical properties of nano-scale objects under thermal fluctuations. In this study, natural frequencies and damping ratios are used as the mechanical indicators of the structures. Finite element software COMSOL was adopted to simulate a cantilever beam under Gaussian white noise, to demonstrate the methodologies, such as the random decrement (Randomdec) method. Furthermore, oscillators with one and two degrees of freedom were analyzed for validation. In addition, the displacement responses of the Kao-Ping-Hsi cable-stayed bridge from field tests were analyzed with the random decrement technique and Ibrahim time domain (ITD). Both methods are able to produce similar natural frequencies and damping ratios with the assistance of autoregressive vector (ARV) analysis.

    CHINESE ABSTRACT i ABSTRACT ii LIST OF TABLES vi LIST OF FIGURES vii NOMENCLATURE xv 1 Introduction 1 1.1 Goals and motivation 1 1.2 Literature review 2 1.2.1 Random decrement (Randomdec) 2 1.2.2 Autoregressive vector (ARV) method 3 1.3 Outline of this thesis 4 2 Theoretical 5 2.1 Random decrement 5 2.1.1 Basic theory introduction 5 2.1.2 Single degree-of-freedom systems 10 2.1.3 White noise process as a model for force 12 2.1.4 White noise impulse a multi-degree-of-freedom systems 13 2.2 Ibrahim time domain 15 2.2.1 Basic theory of the ITD technique 15 2.2.2 Modal parameters identification 16 2.3 Autoregressive Vector 17 2.3.1 Least square method 17 2.3.2 Evaluating coefficient matrices of ARV model 18 2.3.3 Identifying the dynamic characteristics of structures 19 3 Finite Element and Numerical Simulation 22 3.1 Finite element simulation 22 3.2 Numerical simulation 27 4 Case Study 35 4.1 Introduction of cable-stayed bridge 35 4.2 Experimental step 41 4.3 Data analysis 45 5 Results and Discussion 63 5.1 Case study: Finite element simulation of a cantilever beam 63 5.2 Case study: Numerical simulation of classical solution of the 2-DOF damped oscillator 64 5.3 Case study: the Kao-Ping-Hsi cable-stayed bridge 65 6 Conclusions and Future Work 78 6.1 Conclusions 78 6.2 Future work 79 LIST OF REFERENCES 81 APPENDICES Appendix A: Derivation of Randomdec technique 84 Appendix B: Parseval’s identity 89 Appendix C: Correlation functions coefficients 90 Appendix D: Quality factor of viscoelastic rod 91 Appendix E: Wavelet transform .94 Appendix F: An example for ARV inverse calculation problem 97 Appendix G: COMSOL Kao-Ping-Hsi Cable-Stayed Bridge finite element simulation 100 Appendix H: Kao-Ping-Hsi Cable-Stayed Bridge field experiment data 111 Appendix I: Presentation 150 VITA 171 INDEX 172

    [1] M. J. Desforges, J. E. Cooper, and J. R. Wright. Spectral and modal parameter estimation
    from output-only measurements. Mechanical Systems and Signal Processing, 9(3):169–
    186, 1995.
    [2] J. Slavic and M. Boltezar. Damping identification with the morlet-wave. Mechanical
    Systems and Signal Processing, 25:1632–1645, 2011.
    [3] J. W. S. Baron Rayleigh. The Theory of Sound. Macmillan, London, 1877.
    [4] S. H. Crandall and W. D. Mark. Random Vibration in Mechanical Systems. Academic
    Press, New York, 1963.
    [5] H. A. Cole. Method and apparatus for measuring the damping characteristics of a structure,
    November 16 1971. US Patent 3,620,069.
    [6] J. K. Vandiver, A. B. Dunwoody, R. B. Campbell, and M. F. Cook. A mathematical basis
    for the random decrement vibration signature analysis technique. Journal of Mechanical
    Design, 104(2):307–313, 1982.
    [7] S. R. Ibrahim. Double least squares approach for use in structural modal identification.
    American Institute of Aeronautics and Astronautics, 24(3):499–503, 1986.
    [8] N. E. Bedewi. The mathematical foundation of the auto and cross-random decrement
    techniques and the development of a system identification technique for the detection of
    structural deterioration. PhD thesis, University of Maryland College Park, 1986.
    [9] P. H.Wirsching, T. L. Paez, and K. Ortiz. Random Vibrations Theory and Practice. Wiley-
    Interscience, New York, 1995.
    [10] C. S. Huang and C. H. Yeh. Some properties of randomdec signatures. Mechanical Systems
    and Signal Processing, 13(3):491–507, 1999.
    [11] C C Lin, L L Hong, J M Ueng, K C Wu, and C E Wang. Parametric identification of
    asymmetric building from earthquake response records. Smart Materials and Structures,
    14:850–861, 2005.
    [12] G. U. Yule. On a method of investigating periodicities in disturbed series, with special
    reference to wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society of
    London A, 226:267–298, 1927.
    [13] W. Gersch and S. Luo. Discrete time series synthesis of randomly excited structural system
    response. The Journal of the Acoustical Society of America, 51:402–408, 1972.
    [14] L. P. Yong and N. C. Mickleborough. Modal identification of vibrating structures using
    arma model. Journal of the Engineer Mechanics Division, American Society of Civil Engineers,
    115:2232–2250, 1989.
    [15] H. Imai, C. B. Yun, O. Maruyama, and M. Shinozuka. Fundamentals of system identification
    in structural dynamics. Probabilistic Engineering Mechanics, 4(4):162–173, 1989.
    [16] C. S. Huang. Structural identification from ambient vibration measurement using the multivariate
    ar model. Journal of Sound and Vibration, 241(3):337–359, 2001.
    [17] V. Krishnan. Probability and Random Processes. Wiley-Interscience, New York, 2006.
    [18] A. V. Oppenheim and G. C. Verghese. Introduction to communication, control and signal
    processing. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
    011-introduction-to-communication-control-and-signal-processing-spring-2010/, Spring
    2010.
    [19] I. Chowdhury and S. P. Dasgupta. Computation of rayleigh damping coefficients for large
    systems. http://www.ejge.com/2003/Ppr0318/Ppr0318.pdf, Spring 2003.
    [20] S. H. Tsao. Modal parameter identification using non-stattionary vibration data by random
    decrement technique. Master’s thesis, National Cheng Kung University, Tainan, Taiwan,
    2004.
    [21] Q. J. Yang, P. Q. Zhang, C. Q. Li, and X. P. Wu. A system theory approach to multi-input
    multi-output modal parameters identification methods. Mechanical Systems and Signal
    Processing, 8(2):159–174, 1994.
    [22] C. H. Chen, Y. Y. Lin, and S. C. Yang. Variablity of dynamic characteristics of a cablestayed
    bridge subject to traffic-induced vibrations. Journal of Chung Cheng Institute of
    Technology, 39:47–56, 2010.
    [23] C. H. Chen and C. I. Ou. Experimental modal test and aerodynamic analysis in time domain
    of a cable-stayed bridge. International Journal of Structural Stability and Dynamics,
    11:101–126, 2011.
    [24] Y. C. Wang and C. H. Chen. Dynamic characteristics of a cable-stayed bridge measured
    from traffic-induced vibrations. Technical report, American Institute of Physics, 2012.
    [25] P. Cawley. The reduction of bias error in transfer function estimates using fft-based analyzers.
    Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106:29–35,
    1984.
    [26] P. Resibois and M. Deleener. Classical Kinetic Theory of Fluid. John Wiley, New York,
    1977.
    [27] J. P. Hansen and I. R. McDonald. Theory of Simple Fluids. Academic Press, London,
    1990.
    [28] R. Lakes. Viscoelastic materials. Cambridge university press, New York, 2009.
    [29] S. V. Narasimhan, N. Basumallick, and S. Veena. Introduction to Wavelet Transform: A
    Signal Processing Approach. Alpha Science International Limited, Oxford U.K., 2012.
    [30] B. Yan and A. Miyamoto. A comparative study of modal parameter identification based on
    wavelet and Hilbert-Huang transforms. ComputerAided Civil and Infrastructure, 21:9–23,
    2006.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE