簡易檢索 / 詳目顯示

研究生: 連偉成
Lien, Wei-Cheng
論文名稱: 適用於脈衝式電漿推進器之推力平台的研發與衝量量測
Development and Impulse Measurement of a Thrust Stand for Pulsed Plasma Thrusters
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 181
中文關鍵詞: 推力平台正單擺式推力平台電力推進系統脈衝式電漿推進器太空推進
外文關鍵詞: Thrust Stand, Hanging Pendulum Thrust Stand, Electric Propulsion, Pulsed Plasma Thruster, Space Propulsion
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 測量脈衝電漿推進器(Pulsed Plasma Thruster, PPT)的脈衝推力一直是一項挑戰,主要原因在於其推力水平較低且放電時間極短。為解決此問題,本研究開發一種正單擺式推力平台,以實現高精度的脈衝測量。該測量平台整合了電力梳(Electrostatic Comb, ESC)校準系統、渦電流阻尼器以及高精度雷射位移感測器,以確保測量結果的準確性與可重現性。
    校準結果顯示,電纜引起的寄生剛性與阻尼效應會影響彈簧常數與阻尼係數,導致測量偏差。此外,不確定性分析顯示,ESC 系統的脈衝寬度變化是主要的誤差來源,並導致其量測推進器衝量的總不確定性達到45.18%。
    實驗結果表示,在不同輸入能量條件下,PPT 的脈衝測量結果呈現線性關係,其能量轉換效率為 2.92 µN·s/J。未來的改進方向將著重於降低 ESC 脈衝寬度的變化,並最佳化電纜管理,以提升推力測量平台的準確性。

    Accurately measuring the impulse bit of Pulsed Plasma Thrusters (PPTs) remains a challenge due to their low thrust levels and short discharge durations. To address this, a hanging pendulum thrust stand was developed for precise impulse measurements. The stand incorporates an Electrostatic Comb (ESC) calibration system, an eddy current damping mechanism, and a high-precision laser displacement sensor to ensure accurate and repeatable results.
    Calibration revealed that cable-induced parasitic stiffness and damping affected the spring constant and damping coefficient, contributing to measurement deviations. Uncertainty analysis identified pulse width variations in the ESC system as the primary source of error, with additional uncertainties arising from mechanical interactions between electrical wiring and the pendulum arm. The total uncertainty can come to 29.83%.
    Experimental results of PPT’s impulse measurement of different input energy confirmed a linear relationship between input energy and impulse, with an energy-to-impulse conversion ratio of 2.92 µN·s/J. Future improvements will focus on reducing ESC pulse width variations and optimizing cable management to enhance measurement accuracy of thrust stand.

    摘要 i ABSTRACT ii 誌謝 iii CONTENT iv List of Tables vii List of Figures viii Nomenclature xvi 1 CHAPTER 1. Introduction 1 1.1 Electric propulsion systems (EPs) 1 1.1.1 Electrothermal 3 1.1.2 Electrostatic 6 1.1.3 Electromagnetic 10 1.2 Application of electric propulsion system 13 1.3 Pulsed plasma thruster (PPT) 19 1.4 Thrust stand for impulse bit measurement 23 1.4.1 Direct transfer measurement method 24 1.4.2 Measurement method of swing force 28 1.4.3 Target transfer measurement method 35 1.5 Motivation and Objective 45 2 Chapter 2. Literature Review 50 2.1 Development of hanging pendulum thrust stand 53 2.2 Introduction of hanging pendulum thrust stand 55 2.3 Development of thrust stand calibration 59 2.4 Mechanism of thrust stand componer 61 2.4.1 electrostatic comb (ESC) 61 2.4.2 Eddy current damper 67 2.5 Propagation of uncertainties in thrust stand 72 3 Chapter 3. Experiment and Methodology 83 3.1 1st edition of thrust stand 83 3.2 2nd edition of thrust stand 87 3.3 Measurement UI of NI CompactRIO 95 3.4 Electronic equipment 106 3.4.1 Power supply and function generator 106 3.4.2 Oscilloscope and probe 109 3.4.3 Pulsed plasma thruster circuit 111 3.5 Vacuum chamber and pump system 113 3.6 Experimental setup 114 3.6.1 Calibration of ESC 115 3.6.2 Calibration of thrust stand 118 3.6.3 Parameters determination of thrust stand 121 3.7 Measurement of vacuum arc ignitor pulsed plasma thruster (VAI-PPT) 123 3.7.1 Determination of discharge current and voltage 123 3.7.2 Performance determination with thrust stand 125 4 Chapter 4. Results and Discussion 127 4.1 Electrostatic comb calibration 127 4.2 Hanging pendulum thrust stand calibration 132 4.3 Parameters determination of thrust stand 136 4.4 Error and Uncertainty Analysis 141 4.5 Performance of pulsed plasma thruster 146 5 Chapter 5. Conclusions 149 6 Reference 151

    [1] Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology. 2016;25:033002.
    [2] Tacon C. Electron Cyclotron Resonance Gridded Ion Thruster Optic Development: University of Southampton; 2019.
    [3] Tysiąc P, Strelets T, Tuszyńska W. The application of satellite image analysis in oil spill detection. Applied Sciences. 2022;4012:4016.
    [4] Montisci A, Porcu MC. A satellite data mining approach based on selforganized maps for the early warning of ground settlements in urban areas. Applied Sciences. 2022;2612:2679.
    [5] Herman DA, Tofil TA, Santiago W, Kamhawi H, Polk JE, Snyder JS, et al. Overview of the development and mission application of the advanced electric propulsion system (AEPS). Conference2018. International Electric Propulsion
    [6] Cheng AF, Reed C. Asteroid Impact & Deflection Assessment: Double Asteroid Redirection Test. IAC-16-A3 4102017.
    [7] Díaz FC, Carr J, Johnson L, Johnson W, Genta G, Maffione PF. Solar electric propulsion for human mars missions. Acta Astronautica. 2019;160:183194.
    [8] Koppel C, Quinsac G. Electric Thruster Selection Criteria. 8th European Conference for Aeronautics and Space Sciences (EUCASS)2019.
    [9] Ebersohn F, Raja L, Shebalin J. Resistive Magnetohydrodynamic Study of Magnetic Field Effects on Plasma Plumes2013.
    [10] Lev D, Myers RM, Lemmer KM, Kolbeck J, Koizumi H, Polzin K. The technological and commercial expansion of electric propulsion. Acta Astronautica. 2019;159:213-227.
    [11] Mirtich MJ. Resistojet propulsion for large spacecraft systems. Intern Elec Propulsion Conference1982.
    [12] Larson VR, Evans SA. Propulsion for the space station. Acta Astronautica. 1987;16:379-389.
    [13] Phillips DG. Performance of a 10 Millipound Biowaste Resistojet. SAE International; 1971.
    [14] YOSHIDA RY, HALBACH CR, HILL CS. Life test summary and highvacuum tests of 10-mlb resistojets. Journal of Spacecraft and Rockets. 1971;8:414-416. 151
    [15] O’Reilly D, Herdrich G, Kavanagh DF. Electric propulsion methods for small satellites: A review. Aerospace. 2021;28:22.
    [16] Sovey JS, Curran FM, Haag TW, Patterson MJ, Pencil EJ, Rawlin VK, et al. Development of arcjet and ion propulsion for spacecraft stationkeeping. Acta Astronautica. 1993;30:151-164.
    [17] Kinefuchi K, Okita K, Kuninaka H, Nakata D, Tahara H. Preliminary study of high power hydrogen electric propulsion for the space exploration. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference2014. p. 3507.
    [18] Kopacz JR, Herschitz R, Roney J. Small satellites an overview and assessment. Acta Astronautica. 2020;170:93-105.
    [19] Turan E, Speretta S, Gill E. Autonomous navigation for deep space small satellites: Scientific and technological advances. Acta Astronautica. 2022;193:56-74.
    [20] Lafleur T, Habl L, Rossi EZ, Rafalskyi D. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology. 2022;31:114001.
    [21] Bapat A, Salunkhe PB, Patil AV. Hall-effect thrusters for deep-space missions: A review. IEEE Transactions on Plasma Science. 2022;50:189-202.
    [22] Oh B, Countryman A, Regassa M, Clowes A, Miner G, Kemp S, et al. Design, fabrication, and testing of an undergraduate hall effect thruster. Journal of Electric Propulsion. 2023;2:6.
    [23] Myers JL, Kamhawi H, Yim J, Clayman L. Hall Thruster Thermal Modeling and Test Data Correlation. 52nd AIAA/SAE/ASEE Joint Propulsion Conference2016. p. 4535.
    [24] Munro-O’Brien TF, Ryan CN. Performance of a low power Hall effect thruster with several gaseous propellants. Acta Astronautica. 2023;206:257-73.
    [25] Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schönherr T, et al. Operating parameters and oscillation characteristics of an anode-layer Hall thruster with argon propellant. Vacuum. 2014;110:159-164.
    [26] Yamasaki J, Yokota S, Shimamura K. Performance enhancement of an argon-based propellant in a Hall thruster. Vacuum. 2019;167:520-523.
    [27] Shabshelowitz A, Gallimore AD, Peterson PY. Performance of a helicon Hall thruster operating with xenon, argon, and nitrogen. Journal of Propulsion and Power. 2014;30:664-671.
    [28] Ekholm J, Hargus W. E x B measurements of a 200 W xenon Hall thruster. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2005. p. 4405. 152
    [29] Hargus Jr WA, Charles CS. Near exit plane velocity field of a 200-Watt Hall thruster. Journal of Propulsion and Power. 2008;24:127-133.
    [30] Goebel DM, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters: John Wiley & Sons; 2008.
    [31] Brown CO, Pinsley EA. Further experimental investigations of a cesium Hall-current accelerator. AIAA Journal. 1965;3:853-859.
    [32] de Grys K, Rayburn C, Wilson F, Fisher J, Werthman L, Khayms V. BPT4000 Multi-Mode 4.5 KW Hall Thruster Qualification Status. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit2003. p. 4552.
    [33] Pidgeon D, Corey R, Sauer B, Day M. Two years of on-orbit performance of SPT-100 electric propulsion. 24th AIAA International Communications Satellite Systems Conference2006. p. 5353.
    [34] Goebel D, Martinez-Lavin M, Bond T, King A. Performance of XIPS electric propulsion in on-orbit station keeping of the Boeing 702 spacecraft. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2002. p. 4348.
    [35] Szabo J, Azziz Y. Characterization of a high specific impulse xenon Hall effect thruster. 29th International Electric Propulsion Conference, Princeton University2005.
    [36] Azziz Y. Experimental and theoretical characterization of a Hall thruster plume: Massachusetts Institute of Technology; 2007.
    [37] Investigator JP. QB50 System Requirements and Recommendation - Issue 7. In: Manager QP, editor.2015.
    [38] Beattie J, Matossian J. Mercury ion thruster technology. 1989.
    [39] Feili D, Loeb H, Schartner K, Weis S, Kirmse D, Meyer B, et al. Performance mapping of new ÁN-RITs at Giessen. IPEC2005.
    [40] Koizumi H, Kuninaka H. Miniature microwave discharge ion thruster driven by 1 watt microwave power. Journal of Propulsion and Power. 2010;26:601-604.
    [41] Botha JR, Jones T, de Swardt J. Design of an RF ion thruster. 51st AIAA/SAE/ASEE Joint Propulsion Conference2015. p. 3815.
    [42] Magaldi B, Karnopp J, da Silva Sobrinho A, Pessoa R. A global model study of plasma chemistry and propulsion parameters of a gridded ion thruster using argon as propellant. Plasma. 2022;5:324-340.
    [43] Foster JE, Topham TJ. A review of the impact of ground test-related facility effects on gridded ion thruster operation and performance. Physics of 153 Plasmas. 2024;31.
    [44] Zeng M, Liu H, Huang H, Yu D. Magnetic confinement less microwave discharge gridded ion thruster. Plasma Sources Science and Technology. 2023;32:095014.
    [45] Leiter J, Killinger R, Bassner H, Müller J. Development of the Radio Frequeny Ion Thruster RIT XT – A Status Report. 2001.
    [46] Piragino A, Leporini A, Giannetti V, Pedrini D, Rossodivita A, Andreussi T, et al. Characterization of a 20 kW-class hall effect thruster. Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, USA2017. p. 8-12.
    [47] Zhiwen W, Huang T, Xiangyang L, Ling WYL, Ningfei W, Lucheng J. Application and development of the pulsed plasma thruster. Plasma Science and Technology. 2020;22:094014.
    [48] Krejci D, Seifert B, Scharlemann C. Endurance testing of a pulsed plasma thruster for nanosatellites. Acta Astronautica. 2013;91:187-193.
    [49] York TM, Tang H-B. Chapter 9 - Plasma Dynamics and Hydromagnetics: Reviews of Applications. In: York TM, Tang H-B, editors. Introduction to Plasmas and Plasma Dynamics. Oxford: Academic Press; 2015. p. 195-324.
    [50] Zhang Z, Tang H, Yang Y, Li M. Electrostatic probe measurements in a 4 J pulsed plasma thruster. 32nd Int Electric Propulsion Conf2011.
    [51] Vondra R, Thomassen K, Solbes A. A pulsed electric thruster for satellite control. Proceedings of the IEEE. 1971;59:271-277.
    [52] Eckman RF. Langmuir probe measurements in the plume of a pulsed plasma thruster. Langmuir. 1999;1999:10.
    [53] Eckman R, Byrne L, Gatsonis NA, Pencil EJ. Triple Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster. Journal of Propulsion and Power. 2001;17:762-771.
    [54] Glascock MS, Rovey J. Electric solid propellant ablation in a pulsed electric thruster. 2018 Joint Propulsion Conference2018. p. 4818.
    [55] Coletti M, Marques RI, Gabriel S. Design of a two-stage PPT for cubesat application. Proceedings of the 31st International Electric Propulsion Conference: Citeseer; 2009.
    [56] Markusic T, Choueiri E, Berkery J. Measurements of current sheet canting in a pulsed electromagnetic accelerator. Physics of plasmas. 2004;11:4847-58.
    [57] Bushman SS, Burton RL. Heating and plasma properties in a coaxial gasdynamic pulsed plasma thruster. Journal of Propulsion and Power. 2001;17:959-966. 154
    [58] Schönherr T. On the discharge processes in pulsed plasma thruster.
    [59] Zhang Z, Ling WYL, Tang H, Cao J, Liu X, Wang N. A review of the characterization and optimization of ablative pulsed plasma thrusters. Reviews of Modern Plasma Physics. 2019;3:1-41.
    [60] Zhao Y, Wu J. A review on plasma diagnosis technology of pulsed plasma thruster. Journal of Physics: Conference Series: IOP Publishing; 2021. p. 032087.
    [61] Brady M, Aston G. Pulsed plasma thruster ignitor plug ignition characteristics. Journal of Spacecraft and Rockets. 1983;20:450-451.
    [62] Gatsonis NA, Eckman R, Yin X, Pencil EJ, Myers RM. Experimental investigations and numerical modeling of pulsed plasma thruster plumes. Journal of Spacecraft and Rockets. 2001;38:454-464.
    [63] Koizumi H, Noji R, Komurasaki K, Arakawa Y. Plasma acceleration processes in an ablative pulsed plasma thruster. Physics of plasmas. 2007;14:033506.
    [64] Rayburn CD, Campbell ME, Mattick AT. Pulsed plasma thruster system for microsatellites. Journal of spacecraft and rockets. 2005;42:161-170.
    [65] SOLBES A, Thomassen K, VONDRA RJ. Analysis of solid teflon pulsed plasma thruster. Journal of Spacecraft and Rockets. 1970;7:1402-1406.
    [66] Loman J, Vergara A, Rogers AQ. Achieving small satellite ‘smart space’. Proc 32nd Annual AIAA/USU Conf on Small Satellites2018.
    [67] Haag D, Auweter-Kurtz M, Fertig M, Kurtz H. Development of an Applied Field Magnetoplasmadynamic Thruster Design Supported by Numerical Simulations at IRS. 29th International Electric Propulsion Conference2005. p. 1-14.
    [68] Baghdjian M. ”Integrale Messungen am elektromagnetischen Plasmabeschleuniger X-13 im Bereich niedriger Stromstärken der Größenordnung 50 A”, research at DFVLR, student research thesis. University of Stuttgart. 1974.
    [69] Kurtz H. „Integrale Messungen an einem axialsymmetrischen elektromagnetischen Plasmabeschleuniger. Triebwerkmodell X-13”, research at DFVLR: Diploma thesis, University of Stuttgart; 1971.
    [70] Kodys A, Choueiri E. A critical review of the state-of-the-art in the performance of applied-field magnetoplasmadynamic thrusters. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2005. p. 4247.
    [71] Krülle G, Zeyfang E. Preliminary conclusions of continuous applied field 155 11th Electric Propulsion electromagnetic thruster research at DFVLR. Conference1975. p. 417.
    [72] Boxberger A, Herdrich G, Malacci L, de Mendoza Alegre FD. Overview of Experimental Research on Applied-Field Magnetoplasmadynamic Thrusters at IRS. Proceedings of the 5th Russian German Conference on Electric Propulsion, Dresden2014.
    [73] Wu P, Wang Y, Li Y, Zhou C, Sun Y, Gao Y, et al. The performance of a magnetic nozzle enhanced magnetoplasmadynamic thruster. Acta Astronautica. 2024;217:188-196.
    [74] Wang Z, Eun Y, Wu X. Design and demonstration of a micro air-fed magnetoplasmadynamic thruster for small satellites. Acta Astronautica. 2021;181:482-491.
    [75] Balkenhohl J, Glowacki J, Rattenbury N, Cater J. A review of low-power applied-field magnetoplasmadynamic thruster research and the development of an improved performance model. Journal of Electric Propulsion. 2023;2:1.
    [76] Benson S, Arrington L, Hoskins W, Meckel N. Development of a PPT for the EO-1 spacecraft. 35th Joint Propulsion Conference and Exhibit: American Institute of Aeronautics and Astronautics; 1999.
    [77] Myers RM, Oleson SR, Mcguire M, Meckel NJ, Cassady RJ. Pulsed plasma thruster technology for small satellite missions. Annual Small
    Satellite Conference1995.
    [78] Schönherr T, Kawashima R, Arakawa Y, Herdrich G. Evaluation of Discharge Behavior of the Pulsed Plasma Thruster SIMP-LEX2010.
    [79] Herdrich G, Bauder U, Boxberger A, Eichhorn C, Lau M, Pfeiffer M, et al. Overview on Electric Propulsion Development at IRS. Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany2011. p. 11-15.
    [80] Kazeev M, Khodnenko V. Orbital Maneuvers of Earth Observing Satellites Using Electric Propulsion Systems. Plasma Physics Reports. 2019;45:159-65.
    [81] Robinson JB, Richie DJ. Stabilization and attitude determination methods for falconsat-3. Journal of Spacecraft and Rockets. 2016;53:507-19.
    [82] Gatsonis NA, Lu Y, Blandino J, Demetriou MA, Paschalidis N. Micropulsed plasma thrusters for attitude control of a low-earth-orbiting cubesat. Journal of Spacecraft and Rockets. 2016;53:57-73.
    [83] Cassady RJ, Hoskins WA, Campbell M, Rayburn C. A micro pulsed plasma thruster (PPT) for the" Dawgstar" spacecraft. 2000 IEEE Aerospace Conference Proceedings (Cat No 00TH8484): IEEE; 2000. p. 7-14. 156
    [84] Schäfera F. Flight results of the PETRUS pulsed plasma thruster on the 3u CubeSat GreenCube Felix Schäfera*, Christoph Montagb, Georg Herdrich b, Rene Lauferc, Fabio Santonid, Fabrizio Piergentilie, Paolo Marziolie, Diego Amadioe, Lorenzo Frezzad, Käthe Dannenmayerf, Jose Gonzales del Armof. 2022.
    [85] Palumbo DJ, Guman WJ. Effects of propellant and electrode geometry on pulsed ablative plasma thruster performance. Journal of spacecraft and rockets. 1976;13:163-167.
    [86] Schönherr T, Nawaz A, Herdrich G, Röser H-P, Auweter-Kurtz M. Influence of electrode shape on performance of pulsed magnetoplasmadynamic thruster SIMP-LEX. Journal of propulsion and power. 2009;25:380-386.
    [87] Kamimura T, Tahara H. R&D, launch and initial operation of the Osaka institute of technology 1st PROITERES Nano-satellite with electrothermal pulsed plasma thrusters and development of the 2nd and 3rd satellites. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference2014. p. 3609.
    [88] Ozaki J-i, Ikeda T, Fujiwara T, Nishizawa M, Araki S, Tahara H, et al. Development of Osaka Institute of Technology Nano-Satellite “PROITERES” with Electrothermal Pulsed Plasma Thrusters. 32nd International Electric Propulsion Conference2011.
    [89] Antropov NN, Popov GA, Kazeev MN, Chesta E, Khodnenko VP. Low bank energy APPT for micro satellites. 30th International Electric Propulsion Conference, Florence, Italy2007. p. 17-20.
    [90] Matsubara K, Hosokawa H, Akashi N, Oigawa Y, Horisawa H. A shortpulse laser-assisted pulsed plasma thruster. 51st AIAA/SAE/ASEE Joint Propulsion Conference2015. p. 4183.
    [91] Zhang Y, Zhang D, Wu J, He Z, Zhang H. A novel laser ablation plasma thruster with electromagnetic acceleration. Acta Astronautica. 2016;127:438447.
    [92] Pencil EJ, Kamhawi H, Arrington LA, Warren WB. Evaluation of alternate propellants for pulsed plasma thrusters. 27th International Electric Propulsion Conference2001. p. 01-147.
    [93] Northway P, Aubuchon C, Mellema H, Winglee R, Johnson I. Pulsed plasma thruster gains in specific thrust for CubeSat propulsion. 53rd AIAA/SAE/ASEE Joint Propulsion Conference2017. p. 5040.
    [94] Xing Q, Zhang J, Qian M, Jia Z-y, Sun B-y. Thrust stand for low-thrust liquid pulsed rocket engines. Review of Scientific Instruments. 2010;81.
    [95] Xing Q, Zhang J, Qian M, Jia Z, Sun B. Design, calibration and error 157 analysis of a piezoelectric thrust dynamometer for small thrust liquid pulsed rocket engines. Measurement. 2011;44:338-344.
    [96] Xing Q, Li T, Zhang J, Ren Z-j. Study of the dynamic performance of a thrust stand for small-thrust liquid-pulsed thrusters. Review of Scientific Instruments. 2019;90.
    [97] Santivañez J, Blas O, Saenz C, Espinoza L, Solis W, Cornejo J, et al. Design of low-cost solid propellant engine test bench and electronic embedded system used for small rockets. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME): IEEE; 2021. p. 1-6.
    [98] Monette M. Experimental investigations of the Mach-effect for breakthrough space propulsion. 2023.
    [99] Burke R. Characteristics of Rotating Detonation Engines for Propulsion and Power Generation. 2022.
    [100] Burke RF, Rezzag T, Rodriguez A, Garcia K, Ahmed KA, Kotler A. Development of an Automatic-Calibrating Small-Scale Thrust Stand for Rotating Detonation Rocket Engines. AIAA SciTech 2022 Forum2022. p. 2370.
    [101] Polk JE, Pancotti A, Haag T, King S, Walker M, Blakely J, et al. Recommended practice for thrust measurement in electric propulsion testing. Journal of Propulsion and Power. 2017;33:539-555.
    [102] Tsifakis D. Development of cubesat thrusters. 2022.
    [103] Popov SA, Dubrovskaya EL, Schneider AV, Batrakov AV. Measurement of momentum and recoil impulse of plasma jet of vacuum arc thruster. IEEE Transactions on Plasma Science. 2021;49:2567-2574.
    [104] Lewis Jr DH, Janson SW, Cohen RB, Antonsson EK. Digital micropropulsion. Sensors and Actuators A: Physical. 2000;80:143-154.
    [105] Chang Y-K, Kang S-J, Cho H-R. Development of a Micro-Thruster Impulse Measurement System Using Optical Sensors. 2008.
    [106] Ou Y, Zhang Y, Wu J, Tan S, Du X. Measurement method by inferring the thrust from the stress of the cantilever beam based on the photoelasticity theory. Appl Opt. 2019;58:9746-9749.
    [107] Radley RJ. A performance study of a pulsed solid fuel microthruster: Massachusetts Institute of Technology; 1969.
    [108] ZHU C, ZHAO M, Zhang H, Yang Y, Zheng Y. Study on thruster thrust measurement based on parallelogram mechanism. Chinese Journal of Scientific Instrument. 2022;43:98-107. 158
    [109] Wong AR, Toftul A, Polzin KA, Pearson JB. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters. Review of Scientific Instruments. 2012;83.
    [110] Wilson MJ, Bushman SS, Burton R. A compact thrust stand for pulsed plasma thrusters. IEPC Paper. 1997.
    [111] Glascock MS, Rovey JL, Polzin KA. Impulse and performance measurements of electric solid propellant in a laboratory electrothermal ablation-fed pulsed plasma thruster. Aerospace. 2020;7:70.
    [112] Haag TW. Thrust stand for pulsed plasma thrusters. Review of Scientific Instruments. 1997;68:2060-2067.
    [113] Soares DLO, Marques RI. In vacuum dynamic and static tests of a thrust balance for electric propulsion with hysteresis analysis and behaviour prediction with transfer function. Measurement Science and Technology. 2021;32:125903.
    [114] Yang Y-X, Tu L-C, Yang S-Q, Luo J. A torsion balance for impulse and thrust measurements of micro-Newton thrusters. Review of Scientific Instruments. 2012;83:015105.
    [115] Ciaralli S, Coletti M, Gabriel SB. An impulsive thrust balance for applications of micro-pulsed plasma thrusters. Measurement Science and Technology. 2013;24:115003.
    [116] Anselmo MR, Marques RI. Torsional thrust balance for electric propulsion application with electrostatic calibration device. Measurement Science and Technology. 2019;30:055903.
    [117] Wang B, Yang W, Tang H, Li Z, Kitaeva A, Chen Z, et al. Target thrust measurement for applied-field magnetoplasmadynamic thruster. Measurement Science and Technology. 2018;29:075302.
    [118] Kuwahara D, Koyama Y, Otsuka S, Ishii T, Ishii H, Fujitsuka H, et al. Development of direct thrust measurement system for the completely electrodeless helicon plasma thruster. Plasma and Fusion Research. 2014;9:3406025-.
    [119] Rustom A, Al Raii K, Metni N, Antar G, Habchi C. Design of a Pendulum Based Micro-Thrust Measuring Device Application to Plasma Microthrusters. 2019 Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA): IEEE; 2019. p. 1-6.
    [120] Wu C-K, Wang H-X, Meng X, Chen X, Pan W-X. Aerodynamics of indirect thrust measurement by the impulse method. Acta Mechanica Sinica. 2011;27:152-163. 159
    [121] Longmier BW, Reid BM, Gallimore AD, Chang-Diaz FR, Squire JP, Glover TW, et al. Validating a plasma momentum flux sensor to an inverted pendulum thrust stand. Journal of Propulsion and Power. 2009;25:746-52.
    [122] Yanagi R, Kimura I. New type of target for the measurement of impulse bits of pulsed plasma thrusters. Journal of spacecraft and rockets. 1982;19:246249.
    [123] Knudsen M, Partington J. The kinetic. theoryof gases. some modern aspects. The Journal of Physical Chemistry. 2002;39:307-.
    [124] Burton RL. Pulsed plasma thruster performance for microspacecraft propulsion. Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics. 2000;187:337-352.
    [125] Bushman S, Burton R, Antonsen E. Arc measurements and performance characteristics of a coaxial pulsed plasma thruster. 34th AIAA/ASME/SAE/ASEEJointPropulsion Conference and Exhibit1998. p. 3660.
    [126] Jaeger S, Burton R, Laystrom J, Benavides G. Optimization of performance and efficiency of a coaxial pulsed plasma thruster. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2002. p. 3977.
    [127] Wijnen M, Navarro-Cavallé J, Fajardo P. Mechanically amplified milliNewton thrust balance for direct thrust measurements of electric thrusters for space propulsion. IEEE Transactions on Instrumentation and Measurement. 2020;70:1-18.
    [128] Jamison AJ, Ketsdever AD, Muntz E. Gas dynamic calibration of a nanoNewton thrust stand. Review of Scientific Instruments. 2002;73:3629-3637.
    [129] Selden NP, Ketsdever AD. Comparison of force balance calibration techniques for the nano-Newton range. Review of Scientific Instruments. 2003;74:5249-5254.
    [130] Ziemer JK. Performance measurements using a sub-micronewton resolution thrust stand. 27th International Electric Propulsion Conference2001.
    [131] Pancotti AP, Hilario MS, Gilpin M, RESEARCH E, CA CIEA. Comparison of Electrostatic Fins with Piezoelectric Impact Hammer Techniques to Extend Impulse Calibration Range of a Torsional Thrust Stand (Preprint). 2011.
    [132] Lilly TC, Ketsdever A, Pancotti AP, Young M. Development of a specific impulse balance for capillary discharge pulsed plasma thrusters. Journal of 160 Propulsion and Power. 2009;25:823-826.
    [133] Cheah KH, Low K-S, Tran Q-V, Lau Z. Development of an electrostatic calibration system for a torsional micronewton thrust stand. IEEE Transactions on Instrumentation and Measurement. 2015;64:3467-3475.
    [134] Yoshikawa T, Tsukizaki R, Kuninaka H. Calibration methods for the simultaneous measurement of the impulse, mass loss, and average thrust of a pulsed plasma thruster. Review of Scientific Instruments. 2018;89.
    [135] Johnson WA, Warne LK. Electrophysics of micromechanical comb actuators. Journal of Microelectromechanical Systems. 1995;4:49-59.
    [136] Yan A, Appel B, Gedrimas J. MilliNewton thrust stand calibration using electrostatic fins. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition2009. p. 212.
    [137] Bae J-S, Kwak MK, Inman DJ. Vibration suppression of a cantilever beam using eddy current damper. Journal of Sound and Vibration. 2005;284:805-824.
    [138] Cohen ER. An introduction to error analysis: The study of uncertainties in physical measurements. Measurement Science and Technology. 1998;9:022.
    [139] Fuller WA. Measurement error models: John Wiley & Sons; 2009.
    [140] Kößling M, Tajmar M. Design and performance of a nano-Newton torsion balance. Review of Scientific Instruments. 2022;93:074502.
    [141] Ponce-Cruz P, Molina A, MacCleery B. LabVIEW™ FPGA. In: PonceCruz P, Molina A, MacCleery B, editors. Fuzzy Logic Type 1 and Type 2 Based on LabVIEW™ FPGA. Cham: Springer International Publishing; 2016. p. 71138.

    無法下載圖示 校內:2030-04-15公開
    校外:2030-04-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE