| 研究生: |
王怡傑 Wang, Yi-Chieh |
|---|---|
| 論文名稱: |
應用騎乘姿勢最佳化與有限元素分析於電動輔助自行車車架設計開發之研究 Applying Riding Posture Optimization and Finite Element Analysis on Pedelec Frame Design |
| 指導教授: |
蕭世文
Hsiao, Shih-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電動輔助自行車 、Kinect 、騎乘姿勢最佳化 、有限元素分析 |
| 外文關鍵詞: | pedelec, Kinect, riding posture, finite element analysis |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究因應著全球發展的趨勢,包括環境保護議題、城市汙染問題與運動健康,研究近期在歐洲熱門產品,電動輔助自行車,並且隨著技術與法規的成長與配合,在全球逐漸盛行。從文獻中可以得知,電動輔助自行車的騎乘者現存的問題,其中包含了最明顯的安全性與重量的問題,再來就是外型上與傳統的區別,並且可以了解到電動輔助自行車相較於傳統自行車有不同的騎乘模式,需要有更多針對性的設計開發,擺脫舊有自行車演化歷程的框架。討論的有:(1)Kinect於研究應用與騎乘姿勢,(2)有限元素分析於設計應用與車架結構,(3)實驗與設計結果。
本研究利用一個低成本感測工具-Kinect來完成騎乘姿勢最佳化的騎乘實驗,以JAVA程式語言來撰寫控制介面,並記錄受測者的最適騎乘姿勢,再以舒適度問卷驗證成功。接著透過文獻與實驗回饋歸納出設計準則,並使用層級分析法建立評價權重,以設計準則與最適姿勢尺寸建構電動輔助自行車車架模型。最後用ANSYS軟體分析結構,將量化的分析結果與其他要素投入設計評價中,挑選出最佳方案。
本研究首先驗證了Kinect於研究的應用,並得到低成本感測器工具的研究經驗,助於未來實驗多元性的發展,同時也記錄了兩組身高區間,167~175與175~183公分在兩種坡度0與5.72度,共四種狀態下的最舒適騎乘姿勢尺寸,以及騎乘電動輔助自行車的人體上肢會相對上身等。本研究將有限元素分析的量化結果應用在設計流程中,達到設計明箱化,並了解到較粗厚與直線的車管,其結構較穩固。最終得到的最佳設計方案模型,除了配合最舒適的姿勢尺寸,也了解在此技術成長階段的產品,成本與最大問題點-重量最重要,其次才是安全感與穩定結構。
Because of the global development trend, including environmental protection issues, urban pollution, and sports health. This study is research in Europe popular products recently, pedelec, which glow and cooperate with the technology and regulations, gradually prevalent in the world. It can tell from the literatures, that the existing problems of pedelec riders are the most obvious security issues and the weight issues of the vehicles. And it can be learned that pedelecs have different riding modes compared to traditional bicycles. There is a need for more purposeful design development to try to get rid of the old course of bikes evolutional limitations. Discuss: (1)Kinect and riding posture, (2)ANSYS and frame structure, (3) the results of the experiment and design.
This study focuses on the Kinect, a low-cost sensing tool, to complete the riding experiment with the control interface of JAVA coding, and get the most comfortable pedelec riding posture with the comfort inspection to verify it. Summarize the recent literatures and the candidates’ feedback of riding experiment in the design guidelines, and then design pedelec frame. Use a simple design process with applications of ANSYS software for finite element analysis and discuss pedelec frame structure stress results. Let quantitative values applied to the design evaluation, and select a best solution.
Research shows the comfortable size and its relationship of four situations in the different height ranges with the different resistances, also the pedelec riding posture record and feedback of candidates. The finite element analysis applications in the design process shows the more think and straight tubes let the frame structure more stable. In the best designed solution selection process that the frame weight and cost are important expect for ride in the sense of security and structured stability.
冷婉莉 (2011),應用騎乘姿勢最佳化於自行車車體骨架設計之研究,國立成功大學工業設計研究所博士班論文。
吳佳頤 (2008),以機能姿勢原理規範競速自行車的設計組態,國立清華大學工業工程與工程管理研究所碩士論文 。
杜冠澔 (2012),電動輔助自行車之動力測試平台之研製,國立台北科技大學車輛工程研究所碩士論文。
范凱閎(2014),公路自行車最大踩踏功率的riding posture研究,國立清華大學工業工程與工程管理學系碩士論文。
Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., & Vorraro, G.(2015). A Dynamic Model for the Performance and Environmental Analysis of an Innovative e-bike. Energy Procedia, 81, 618-627.
Buchert, T., Steingrímsson, J.G., Neugebauer, S., Nguyen, T.D., Galeitzke, M., Oertwig, N., Seidel, J., McFarland, R., Lindow, K., Hayka, H., & Stark, R. (2015). Design and Manufacturing of a Sustainable Pedelec. Procedia CIRP, 29, 579-584.
Chung, C-P., & Lee, C-F. (2012). Parameters Decision on the Product Characteristics of a Bike Frame. Procedia - Social and Behavioral Sciences, 40, 107-115.
Covill, D., Begg, S., Elton, E., Milne, M., Morris, R., & Katz, T. (2014). Parametric finite element analysis of bicycle frame geometries. Procedia Engineering, 72, 441-446.
Covill, D., Blayden, A., Coren, D., & Begg, S. (2015). Parametric finite element analysis of steel bicycle frames: the influence of tube selection on frame stiffness. Procedia Engineering, 112, 34-39.
Diego-Mas, J.A., & Alcaide-Marzal , J. (2014). Using Kinect™ sensor in observational methods for assessing postures at work. Applied Ergonomics, 45, 976-985.
Haustein, S., & Møller, M. (2016). E-bike safety: Individual-level factors and incident characteristics. Journal of Transport and Health, 3, 386-394.
Hiselius, L.W., & Svensson, Å (2016). E-bike use in Sweden – CO2 effects due to modal change and municipal promotion strategies. Journal of Cleaner Production, 141, 818-824.
Hsiao, S-W., & Ko, Y-C. (2013). A study on bicycle appearance preference by using FCE and FAHP. International Journal of Industrial Ergonomics, 43, 264-273.
Hsiao, S-W., Chen, R-Q., & Leng, W-L. (2015). Applying riding-prosture optimization on bicycle frame design. Applied Ergonomics, 51, 69-79.
Iodice, P., Abagnale, C., Cardone, M., Strano, S., Terzo, M., & , Vorraro, G. (2015). Power requirements and environmental impact of a pedelec. A case study based on real-life applications. Environmental Impact Assessment Review, 53, 1-7.
Jones, T., Harms, L., & Heinen, E. (2016). Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility. Journal of Transport Geography, 53, 41-49.
Kwolek, B., & Kepski ,M. (2016). Fuzzy inference-based fall detection using Kinect and body-worn accelerometer. Applied Soft Computing, 40, 305-318.
Rudolph, F. (2014). Promotion of Pedelecs as a Means to Foster Low-carbon Mobility:Scenarios for the German City of Wuppertal. Transportation Research Procedia, 4, 461-471.
Schepers, J.P., Fishman, E., den Hertog, P., Klein Wolt, K., & Schwab, A.L. (2014). The safety of electrically assisted bicycles compared to classic bicycles. Accident Analysis and Prevention, 73, 174-180.
Strano, S., Abagnale, C., Cardone, M., Iodice, P., Terzo, M., & Vorraro, G. (2015). Model-based Control for an Innovative Power-assisted Bicycle. Energy Procedia, 81, 606-617.
Valmohammadi, C., & Dashti, S. (2016). Using interpretive structural modeling and fuzzy analytical process to identify and prioritize the interactive barriers of ecommerce implementation. Information and Management, 53, 157-168.
Wurnitsch, W., Siebert, M., Litzenberger, S., & Sabo, A. (2010). Development of an individually customizable integral carbon aerobar based on sEMG measurements of the upper limbs. Procedia Engineering, 2, 2631-2635.
Yamazaki, H., Matsuda, A. (2016). Joint Torque Evaluation of Lower Limbs in Bicycle Pedaling. Procedia Engineering, 147, 263-268.
校內:2022-06-19公開