| 研究生: |
林奕瑋 Lin, Yi-Wei |
|---|---|
| 論文名稱: |
應用多重輸入多重輸出陣列訊號技術於水下聲音通訊之研究 A Study of Implementing MIMO Array Signal Processing for Underwater Acoustic Communication |
| 指導教授: |
涂季平
Too, Gee-Pinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 聲音對比控制法 、聲束聚焦 、時間反轉法 、適應性時間反轉 法 、有限脈衝響應濾波器 、水下聲波通訊 |
| 外文關鍵詞: | acoustic contrast control, sound focusing, time reversal mirror, adaptive time reversal mirror, finite impulse response filter, underwater acoustic communication |
| 相關次數: | 點閱:161 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要將三種陣列信號處理之方法,應用於多重輸入多重輸出水下通訊之聲束聚焦及水下串音通訊,分別為聲音對比控制法、時間反轉法與適應性時間反轉法。聲音對比控制法為聲束聚焦技術,可用於增加或減少特定區域的聲音勢能密度,亦即聲音亮暗區,並達到避免監聽及改善通訊品質之目的。時間反轉法已廣泛的應用在克服水下聲音通道多重路徑的影響。然而,更發展出適應時間反轉法來提升水下聲音通訊的串音問題。
水下聲束聚焦方面,本研究利用計算聲線法推估聲音通道之脈衝響應函數,經過聲音對比控制法之處理,可推估其權重函數增加或減少特定區域的聲音勢能密度,為評估此法之可行性模擬環境為一150米之等聲速之海水層與海床,而陣列設置參數影響這些方法的效果。因此,根據模擬之結果,討論陣列麥克風之數量、聲源發射頻率、控制區域與陣列水平距離及控制區域幾何關係對此方法之影響,以便應用於後續水下通訊之相關研究。水下串音通訊方面,本研究採用拖航水槽做為水下通訊測試平台,做為時間反轉法與適應性時反法之性能評估。此平台實際上對聲波通訊的好處在於更容易探討陣列設置參數的影響,如訊雜比,單一通道與多通道,聲源陣列之間距等,這些參數對水下串音通訊品質所造成的影響。實驗採用兩個發射聲源分別發射10kHz及16kHz為中心頻率的調變波,接收陣列由四個水下麥克風組成且距離發射陣列30米。
根據數值分析結果發現聲音對比控制法之聲束聚焦於淺海模擬環境,有效地提升指定接收區域聲場之能量。另一方面,根據實驗結果發現時間反轉法與適應性時間反轉法的效果隨著接收陣列的數量而增加。整體而言,適應性時間反轉法的訊雜比與錯誤率之效能皆優於時間反轉法,陣列設置參數如聲源陣列之間距影響此法之效果。聲音對比控制法未來將可應用頻率鍵移調變技術於提升水下通訊品質,時間反轉法與適應性時間反轉法亦可應用於提升多重輸入多重輸出水下通訊之傳輸速率。
This study implementing three kinds of array signal processing that apply on sound focusing and crosstalk for multiple-input-multiple-output underwater communication applications. Those are the acoustic contrast control, time reversal mirror and adaptive time reversal mirror. Acoustic contrast control is a sound focusing technique. This technique can the establishment of two zones: a bright zone around the user and a dark zone for other regions to improve underwater communication applications. Then, time reversal mirror has been widely applied to mitigate the inter-symbol interference in underwater channels. Meanwhile, an adaptive time reversal mirror is introduced to improve the crosstalk quality between receivers in underwater acoustic communication.
For underwater sound focusing, numerical analysis for acoustic contrast control was simulated by using ray method for Green’s function calculation between the source point and the field point in a shallow water channel. It provides the optimal sound contrast for increasing or decreasing the potential sound energy of a specific area. To verify the proposed method, a150-mdepth shallow-water channel was simulated. However, array configuration affects the performance of those mechanisms. Therefore, effects of the parameters, which comprised the number of control sources, transmission frequency, control distances between sources, and control zone of a geometric location, were simulated. For underwater crosstalk communication, to explore the effectiveness of time reversal mirror and adaptive time reversal mirror, this study explored both mechanisms in an experiment using a towing tank as a testing platform. The advantage of this process is its simplicity in examining the effects of the array configuration of this crosstalk mechanism. The experiment using dual sources transmit 10 and 16 kHz modulated signal and four hydrophones as receiver array over a 30m communication range. Results of array configuration parameters are discussed i.e. the effects of signal to noise ratio in a single and multi-channel, number of receivers, spacing between sources and noise energy threshold.
The simulation results show that acoustic contrast control is an effective approach for sound focusing in shallow water that can increase the potential sound energy of a specific area. On the other hand, the experimental data demonstrate both time reversal mirror and adaptive time reversal mirror have better performance when the number of receivers increases. Overall, the performance of adaptive time reversal mirror is better than time reversal mirror in terms of BER and SNR. Then, the array configuration such as number of receivers and spacing between sources affects the performance of SNR and BER. In the future, acoustic contrast control can be applied to enhance underwater communications by using frequency-shift keying modulation. Time reversal mirror and adaptive time reversal mirror can be applied as the alternative way to increase the data rate at short ranges for multiple-input-multiple-output communication applications.
[1]P. A Nelson and S.J. Elliot, Active control of sound, Academic Press (1992).
[2]B. D Van Veen and K. M. Buckley, Beamforming: A Versatile approach to spatial filtering, IEEE ASSP Magazine 5, pp. 4–24 (1988).
[3]M. Fink, C. Prada, F. Wu and D. Cassereau, Self focusing in inhomogeneous media with time reversal acoustic mirrors, IEEE Ultrasonic symposium proceedings, pp. 681–686 (1989).
[4]C. Dorme and M. A. Fink, Ultrasonic beam steering through inhomogeneous layers with a time reversal mirror, IEEE Trans. Ultrason. Ferroelectr. Freq. control 43, pp. 167–175(1996).
[5]C. Prada, S. Manneville, D. Spoliansky and M.A. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatters, J. Acoust. Soc. Am. 99 (4), pp. 2067–2076(1996).
[6]J. S. Kim, H. C. Song and W.A. Kuperman, Adaptive Time Reversal Mirror, J. Acoust. Soc. Am.109, pp. 1817–1825 (2001).
[7]J. W. Choi and Y. H. Kim, Generation of an acoustically bright zone with an illuminated region using multiple sources, J. Acoust. Soc. Am. 111, pp. 1695–1700 (2002).
[8]J. H. Chang, C. H. Lee, J. Y. Park and Y. H. Kim, A realization of sound focused personal audio system using acoustic contrast control, J. Acoust. Soc. Am. 125 (4), pp. 2091–2097 (2009).
[9]C. H. Lee, J. H. Chang, J. Y. Park and Y. H. Kim, Personal Monitor & TV Audio System by Using Loudspeaker Array, Korean Society for Noise and Vibration Engineering 17 (8), pp. 701–710 (2008).
[10]J. Y. Park, J. H. Chang, Y. H. Kim and Y. Park, Personal stereophonic system using loudspeakers: feasibility study, International Conference on Control, Automation and Systems, pp. 236–240 (2008).
[11]B. H. Wu and G. P. Too, Parameter analysis in Acoustic Contrast Control Design Scheme for a Loudspeaker Array, J. Computational. Acoust. 20 (4) (2012).
[12]W. A. Kuperman, W. S. Hodgkiss, H. C. Song T. Akal, C. Ferla, and D. R. Jackson, Phase conjugation in the ocean: Experimental demonstration of an acoustic time reversal mirror, J. Acoust. Soc. Am. 103, pp.25–33 (1998).
[13]M. R. Dungan and D.R Dowling, Computed narrow-band time reversing array retrofocusing in a dynamic shallow ocean, J. Acoust. Soc. Am.107, pp. 3101–3112(2000).
[14]H.C. Song, P. Roux, W.S. Hodgkiss, W.A. Kuperman, T. Akal and M. Stevenson, Multiple-input-multiple output coherent time reversal communications in a shallow water acoustic channel, IEEE J. Ocean. Eng. 31, pp. 170–178 (2006).
[15]H.C. Song, W.A. Kuperman and W.S. Hodgkiss, A time reversal mirror with variable range focusing, J. Acoust. Soc. Am. 103, pp. 3234–3240 (1998).
[16]A. L. Maggi and A. J. Duncan, AcTUP v2.2lα Installation & User Guide, Centre for Marine Science and Technology at Curtin University of Technology (2007).
[17]M. R. Dungan and D.R Dowling,Computed narrow-band time reversing array retrofocusing in a dynamic shallow ocean,J. Acoust. Soc. Am. 107, pp. 3101-3112 (2000).
[18]G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman and H. C. Song, An initial demonstration of underwater acoustic communication using time reversal mirror, IEEE Journal of Oceanic Engineering 27, pp. 602-609 (2002).
[19]G. F. Edelmann, H.C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman and T. Akal, Underwater acoustic communication using time reversal, IEEE Journal of Oceanic Engineering 30, pp. 852-864 (2005).
[20]C. Prada, S. Manneville, D. Spoliansky and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatters, J. Acoust. Soc. Am. 99, pp. 2067-2076 (1996).
[21]J. S. Kim, and K. C. Shin, Nulling crosstalk in underwater communication with an adaptive time reversal mirror, Proceeding of IEEE Oceans Conference 3, pp. 1382-1388 (2003).
[22]H. C. Song, W.S. Hodgkiss, W.A. Kuperman, P. Roux, T. Akal and M. Stevenson, Experimental demonstration of adaptive reverberation nulling using time reversal mirror, J. Acoust. Soc. Am.118, pp. 1381-1387 (2005).
[23]H. C. Song, W.S. Hodgkiss, W.A. Kuperman, M. Stevenson and T. Akal, Improvement of time reversal communications using adaptive channels equalizers, IEEE Journal of Oceanic Engineering 31, pp. 487-496 (2006).
[24]H. C. Song, J. S. Kim, W.S. Hodgkiss, W.A. Kuperman and M. Stevenson,High rate multiuser communication in shallow water,J. Acoust. Soc. Am. 128, pp. 2920-2925 (2010).
[25]J. S. Kimand K.C. Shin, Multiple focusing with adaptive time-reversal mirror, J. Acoust. Soc. Am.115, pp. 600-606 (2004).
[26]F. B. Jensen, W. A. Kuperman, M. B. Porter and H.Schmidt, computational ocean acoustics, Springer Science & Business Media (2000).
[27]Dirk Tielbürger, Steven Finetteand Stephen Wolf, Acoustic propagation through an internal wave field in a shallow water waveguide, J. Acoust. Soc. Am. 101, pp.789-808 (1997).
[28]John G.Proakis, Masoud Salehiand Gerhard Bauch, Contemporary communication systems using MATLAB, Nelson Education(2012).
[29]John G. Proakis, Digital communications, McGraw-Hill (1995).
[30]Robert J Urick, Principles of underwater sound for engineers, Tata McGraw-Hill Education (1967).
[31]T. C. Yang, Correlation-based decision-feedback equalizer for underwater acoustic communications, IEEE Journal of Oceanic Engineering 30, pp. 865 - 880 (2005).
[32]T. C. Yang, Differences between passive-phase conjugation and decision-feedback equalizer for underwater acoustic communications, IEEE Journal of Oceanic Engineering 29, pp.472 - 487 (2004).