| 研究生: |
林立偉 Lin, Li-Wei |
|---|---|
| 論文名稱: |
利用高級氧化技術進行
化學鎳廢液中檸檬酸及次磷酸之去除研究 The treatment of Citrate and Hypophosphite in electroless plating solution by AOPs |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 配位基至金屬的電荷遷移 、芬頓 、化學混凝 |
| 外文關鍵詞: | chemical coagulation, ligand to metal charge transfer, Fenton |
| 相關次數: | 點閱:77 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以化學鎳廢液為出發點,針對其中的螯合劑檸檬酸,還原劑次磷酸,探討其處理方法。化學混凝沉澱顯示,亞磷酸及磷酸有相當好的處理效果,而次磷酸及檸檬酸COD部分則不佳。所以本研究嘗試利用芬頓試劑去除COD,並且氧化次磷酸形成亞磷酸及磷酸,搭配化學混凝沉澱作去除。
在檸檬酸及次磷酸混合液芬頓法氧化方面,最佳操作條件為pH介於2.8~3.0之間,試劑莫耳比在次磷酸:檸檬酸:Fe(II):H2O2=1:1:1.5:3下,可完全氧化次磷酸,但此時COD的去除率僅20%。原因為次磷酸在氧化後產生亞磷酸及磷酸,會與催化劑(Fe2+或 Fe3+)錯合進而使其失活,錯合後的鐵便無法有效催化雙氧水產生氫氧自由基,故溶液中會殘留大量的COD。
接著便研究芬頓法氧化單成分檸檬酸,最佳pH操作範圍於pH 2~3,在[ Cit.]:[Fe2+]:[H2O2] = 1:1.5:10.5的操作條件下可去除70%的COD,此為Fenton法的技術極限。隨後以Photo-Fenton及Fered-Fenton法處理檸檬酸,COD可突破傳統Fenton的處理極限;Photo-Fenton法的COD處理極限為90%,Fered-Fenton法在適當的操作條件下,COD甚至可完全的去除。利用IC分析檸檬酸氧化後的產物,發現以高級氧化技術氧化檸檬酸後的主要產物為草酸。而透過文獻可解釋,Photo-Fenton法在COD去除率的提升主要是藉由反應後期的草酸與三價鐵錯合,吸收光源進行”配位基至金屬的電荷遷移”效應,草酸因此反應機構而自行分解成CO2。而Fered-Fenton法在COD去除率的提升,主要進行與Photo-Fenton法相似的反應,藉由反應後期的草酸與三價鐵錯合,於陰極上進行”配位基至金屬的電荷遷移(Ligan-to-Metal Charge Transfer)”效應。
在檸檬酸及次磷酸混合液高級氧化研究中,Photo-Fenton及Fered-Fenton法反應可克服Fenton法反應中磷錯合催化劑導致處理效果不佳的問題。在相同加藥條件下,其處理極限可由Fenton法的20%COD去除率提升至90%。Photo-Fenton法中,H2O2迅速加藥可縮短反應時間,但最後會因汙泥的遮蔽效應而無法提升COD去除率。Fered-Fenton法中,H2O2迅速加藥會造成大量的零價鐵於陰極上沉澱,溶液中鐵離子濃度降低,導致無法順利進行初期的氫氧自由基氧化步驟,及後期的”配位基至金屬的電荷遷移”效應。故Fered-Fenton法最適的操作方式,雙氧水採連續式,且全程加藥,防止催化劑於陰極沉澱。
The primary objective of this dissertation is to study the treatment of chelate ( citrate ) and reductant ( hyposphosphite ) from electroless nickel plating wastewater. It is easy to remove phosphite and phosphate in the solution by chemical coagulation and precipitation, but it is difficult for the removal of hypophosphite and COD of citrate. We used Fenton’s reagent to remove COD of citrate and oxidize hypophosphite to phosphite or phosphate, then both of phosphate and phosphate could be removed by chemical coagulation.
In binary system (contain hypophosphite and citrate), the hypophosphite could be oxidized entirely by Fenton’s reagent at pH2.8~3.0 and by the following molar ratio of dosage: hypophosphite:citrate:Fe(II):H2O2:= 1:1:1.5:3. Only 20% COD major contributed by citrate was removed due to the iron ions complex with phosphite and phosphate. The complexed iron ions were poisoned. On the other words, the poisoned iron ions coulde not catalyze H2O2 and remove COD.
In single system (only citrate), 70% COD of citrate was removed by Fenton process at pH2~3 and by the following molar ratio of dosage: citrate:Fe(II):H2O2=1:1.5:10.5. When we employed Photo-Fenton and Fered-Fenton for the treatment of citrate, the optimum efficiencies of COD removal were 90% and 100% COD, respectively. Among of Fenton, Photo-Fenton and Fered-Fenton processes for the treatment of citrate, the main intermediate was oxalate analyzed by ion chromatography. It is well known that the lights can induce ligand-to-metal charge transfer of the complexed ferrioxalate, and the oxalate transform to CO2 during this stage. Therefore, the hydroxyl radical plays no significant for the degradation of oxalate. The mechanism of Fered-Fenton for oxalate treatment is also similar to that in photo-Fenton process, the complexed ferrioxalate proceed “ligand-to-metal charge transfer” in cathode.
In binary system (contain hypophosphite and citrate), both of Photo-Fenton and Fered-Fenton can overcome the problem that phosphorous complexing with catalyst lead to low COD removal efficiency in Fenton process. In the same dosage condition, COD removal efficiency can increase to 90%. In Photo-Fenton, it can decrease reaction time by increasing H2O2 dosage rate, but it is influenced by large sludge in final stage of Photo-Fenton process. In Fered-Fenton, it causes amount of zero valent iron that precipitating on cathode seriously by increasing H2O2 dosage rate, and then the iron concentration decrease in solution, not only the oxidation of hydroxyl radical in initial but also “ligand to metal charge transfer” can’t carry into execution efficiently. So the H2O2 dosage method must be controlled continuously in the whole course to prevent the precipitated of catalyst on cathode in Fered-Fenton process.
Adams G. E., Boag J. W., Michael B.D., Reactions of the hydroxyl radical. Part 2. Determination of absolute rate constants, Trans. Faraday Soc., 61, 1417-1424, 1965.
Ahmed A., Abd EI-Raady, Tsuyoshi N., Phuong K., Catalytic Ozonation of Citric Acid by Metallic Ions in Aqueous Solution, Ozone, Science and Engineering, 27, 495-498, 2005.
Bali U., Catalkaya E. C., Sengul F., Photochemical Degradation and Mineralization of Phenol: A Comparative Study, Journal of Environmental Science and Health Part A -Toxic/Hazardous Substances & Environmental Engineering, 38, 2259, 2003.
Balmer M. E., Sulzberger B., Atrazine Degradation in Irradiated Iron/Oxalate Systems: Effects of pH and Oxalate, Environmental Science and Technology, 33, 2418, 1999.
Barb, W. G., Baxendale, J. H., George, P., Hargrave, K. R., Reactions of ferrous and ferric ions with hydrogen peroxide. II. The. ferric ion reaction., Trans. Faraday Soc., 47, 462-500, 1951.
Bauer R., Waldner G., Fallmann H., Hager S., Klare M., Krutzler T. Malato S., Maletzky P., The Photo-Fenton reaction and the TiO2/UV process for waste water treatment-novel developments, Catalysis Today, 53, 131, 1999.
Benkelberg H. J., Warneck P., Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of ‧OH and SO4- quantum yields, Journal of Physical Chemistry, 99, 5214, 1995.
Bielski B. H. J., Cabelli D. E., Arudi R. L., Ross A. B., Reactivity of HO/O radicals in aqueous solution, Journal of physical and chemical reference data, 14, 1041, 1985.
Birame B., Enric B., Dieng M. M., Electrochemical degradation of the herbicide 4-chloro-2mehtylphenoxacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation, Journal of electroanalytical chemical, 540, 25-34, 2003.
Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B., Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals (‧OH/O-‧) in aqueous solution, J. Phy. Chem. Ref. Data17, 513-886,1988.
Chen, C. C.;Lai, C. K.;Liang, M. T.;Hsu, C. Y., The study of citric acid decomposition in a supercritical water oxidation system, Proceedings of the Air and Waste Management Association’s Annual Meeting and Exhibition, 198, Proceedings of the A and WMA’s 97th Annual Conference and Exhibition;Sustainable Development:Gearing up for the Challenge, 5823-5830, 2004.
Chou S. S., Huang Y. H., Lee S. H., Huang G. H., Huang C., Treatment of high strength hexamine containing wastewater by electro-Fenton method, Wat. Res, 1.33, 3, 751-759,1999.
Elisabetta P., Luca D. P., Carlo M., Oxidation of phosphorus compounds by Fenton’s reagent, Annali di Chemica by Societá Chimica, 2003.
Enric B., Birame B., Angel B. M.., Calpe J. C., Garrido J. A., Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method, Chemosphere, 51, 227-235, 2003.
Enric B., Eva M., Roser S., Laura S., José P., Xavier D., Juan C., Aniline mineralization by AOP’s:anodic oxidation, photocatalysis, electro-Fenton and photoelectron-Fenton processes, Applied Catalysis B, Environmental, 16, 31-42.
Enric B., Birame B., Ignasi S., José A. G., Rosa M. R., Conchita A., Pere-Lluís C., Christos C., Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode, Electrochimica Acta, 49, 4487-4496, 2004.
Francko, D. A., Heath, R. T., UV-Sensitive Complex Phosphorus: Association with Dissolved Humic Material and Iron in a Bog Lake, Limnol. Oceanogr., 27, 564, 1982.
Getoff, N., Schwoerer, F., Markovic, V. M., Sehested, K., Nielsen, S. O., J. Phys. Chem., 75, 749-755, 1971.
Fytianos K., Voudrias E., Raikos N., Modelling of phosphorus removal from aqueous and wastewater sample using ferric iron, 101, 123-130, 1998.
Gilberg L., Nilsson D., Akesson M., The influence of pH when precipitating orthophosphate with aluminium and iron salts, Proceedings of the 7th Gothenburg Symposium, 95-106, 1996.
Gnann M., Gregor C. H., Schelle S., Chemical oxidative process for purifying highly contained wastewater, WO patent 93/08129, Peroxid- Chemie GmbH. DE, 1993.
Huang Y. H., Chen C. C., Huang G. H., Chou S. S., Comparison of a novel electro-Fenton method with Fenton’s reagent in treating a highly contaminated wasterwater, Water Science and Technology, V43, 2, 17-24, 2001.
Hui Z., Daobin Z., Jiayong Z., Removal of COD from landfill leachate by electro-Fenton method, Journal of Hazardous Materials, B135, 106-111, 2006.
Italo M., Paola P., Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst, Chemical Engineering Science, 54, 3107-3111, 1999.
Jayson G. G., Parsons B. J., Swallow A. J.,Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution .Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter, Jour. Chem. Soc., 169, 1597-607, 1973.
Jeong J. S, Yoon J. Y., Dual roles of CO2-˙ for degrading synthetic organic chemicals in the photo/ferrioxalate system, Water Research, 38, 3531, 2004.
Jian J. Q., Maung H. Q., Maung N. W., Fook S. W., Effect of feed pH on an integrated membrane process for the reclamation of a combined rinse water from electroless nickel plating, Journal of Membrane Science, 217, 261-268, 2003.
Jin A., Lu M. C., Parichat C., Kinetics of degradation by Fenton and electro-Fenton processes, Water Research, 40, 1841-1847, 2006.
Kavitha V., Palanivelu K., Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes-A comparative Study, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 38, 1215, 2003.
Kavitha V., Palanivelu K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55, 1235, 2004.
Lee Y. H., Yoon J. Y., Jeong J. S., Lee C. H., Kim S. Y., Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process, Chemosphere, 51, 901, 2003.
Luedecke C., Hermanowicz S. W., Jenkins D., Precipitattion of ferric phosphate in activated sludge: a chemical model and its verification, Water Sci. and Technol., 21, 325-337, 1989.
Lu M. J., Chen J. N., Chang C. P., Effect of inorganic ions on the oxidation of Dichlorvos insecticide with Fenton’s reagent, Chemosphere, 35, 2285-2293, 1997.
McDowell M. M., Ivey M. M., Lee M. E., Salmassi F. T. M., Khachikian C. S., and Foster K. L., Detection of hypophosphite, phosphate, and orthophosphate in natural geothermal water by ion chromatography, Jour. of chromatography A, 1039, 105-111, 2004.
Liou M. J., Lu M. J., Chen J. N., Oxidation of TNT by photo-Fenton process, Chemosphere, 57, 1107-1114, 2004.
Matzapetakis M., Raptopoulou C. P., Tsohos A., Papaefthymiou V., Moon N., Salifoglou A., Synthesis, Spectroscopic and Structural Characterization of the First Mononuclear, Water Soluble Iron-Citrate Complex, (NH4)5Fe(C6H4O7)2‧2H2O, J. Am. Chem. Soc., 120, 13266-13267, 1998.
Nagaosa Y., Aoyama E., Catalytic oxidation of phosphate and hypophosphite to phosphate on Pd/activated carbon powder, Carbon , 39, 2077-2088, 2001.
O. KRIK, Encyclopedia of chemical technology, 6, 150-178, 1979.
Pierri E., Dalas E., The precipitation of ferric phosphate on porous polymer, Colloids and surfaces A, 139, 335-340, 1998.
Pignatello J. J., Dark and photoassisted Fe3+-catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environmental Science and Technology, 26, 944, 1992.
Qiquan W., Ann T. Lemley, Kinetic Model and Optimization of 2,4-D Degradation by Anodic Fenton Treatment, Environ. Sci. Technol, 35, 4509-4514, 2001.
Recht H. L., Ghassemi M., Kleber E.V., Precipitation of phosphates from water and wastewater using lanthanum salts, Proc. Adv. Water Pollut. Res. 5th Intl. Conf., 1, 1-17, 1970.
Ruppert G., Bauer R., The photo-Fenton Reaction-an effective photochemical wastewater treatment process, Journal of Photochemistry and Photobiology.A: Chemistry, 73, 75, 1993.
Schumann U. Grundler P. Electrochemical degradation of organic substances at PbO2 anodes monitoring by continous CO2 measurements, Wat. Res., 32., 9., 2835-2842, 1998.
Schwarz H. A., Dodson R. W., Reduction potentials of CO2-‧and the alcohol radicals, J. Phys. Chem., 93, 409-414, 1989.
Sedlak D. L., Hoigne J., The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmospheric Environment, 27, 2173, 1993.
Sehested K., Bjergbakke E., Rasmussen O., Fricke H., Reactions of H2O3 in the Pulse-Irradiated Fe(II)-O2 System, Journal of chemical physics, 51, 3159, 1969.
Seida Y., Nakano Y., Removal of phosphate in dissolution-coagulation process of layered double hydroxide, 34, 7, 906-911, 2001.
SHUNITZ T., MASAYUKI K., YOSUKE N., MOTOKI T., HIDEKI K. and MASAMI F., DEGRADATION OF BISPHENOL A BY PHOTO-FENTON PROCESSES, Toxicol. And Environ. Chem.,85, 4-6, 95-102, 2003.
Stumm. W., Morgen. J. J., Aquatic Chemistry. Chemical Equilibria and
Rates in Natural Waters. 3ed ed., John Wiley & Sons, New York., 1996.
Pumpel T., Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter, Hydrometallurgy, 59, 383-393, 2001.
Ventura A., Jacquet G., Bermond A., Camel V., Electrochemical generation of Fenton’s reagent application to atrazine degradation, Water research, 36, 517-522, 2002.
Wang Q., Lemley A. T., Oxidation of diazinon by anodic Fenton treatment, Water research, 36, 3237-3244, 2002.
Weiss, J., Humphrey, C. W., Nature, 163.2, 691, 1949.
Werner S., CHEMISTRY of the SOLID-WATER INTERFACE, P.20, 1992.
Wilson D. R., Page I. C., Cocci A. A. and Landine R. C., Case History-Two Stage, Low-Rate Anaerobic Treatment Facility For South American Alcochemical/Citric Acid Wastewater, Wat. Sci. Tech, 38, 45-52,1998.
Yoon J. Y., Lee Y. H., Kim S. Y., Investigation of the reaction pathway of OH radicals produces by Fenton oxidation in the conditions of wastewater treatment, Water Science and Technology, 44, 15, 2001.
Zuo Y., Holgne J., Formation of Hydrogen Peroxide and Depletion of Oxalic Acid on Atmospheric Water by Photolysis of Iron(III)-Oxalato Complexes, Environmental Science and Technology, 26, 1014, 1992.
Zuo Y., Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets, Geochimica et Cosmochimica Acta, 59, 3123, 1995.