| 研究生: |
許根寧 Shu, Ken-Ning |
|---|---|
| 論文名稱: |
以統計模擬研究母體總數之貝氏估計 Estimating the number of species through Bayesian method in Sampling-based approaches |
| 指導教授: |
黃文典
Hwang, Wen-Dean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 25 |
| 外文關鍵詞: | Bayesian |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
Gibbs sampler and Data augmentation algorithms can be viewed as two alter-
native sampling(or Monte Carlo)-based approaches to calculate the numerical
estimates of marginal density distribution. This article is concerned with the
estimation of the number of species in a population through a fully hierarchical
Bayesian model and an empirical Bayes approach using two kinds of alternative
sampling-based approaches proposed above. The proposed Bayesian estimators
are based on Poisson random variables with mean that are distributed according
to a prior distribution with unknown parameters.
1. Bunge, J. and Fitpatrick, M. (1993). Estimating the number of species.:
A review, Journal of the American Statistical Association, 88, 421, 364-373.
2. Bunge, J. and Freeman-Gallant, A. (1996). Empirical Bayes estimation of
the number of species, Technical Report, Cornell University, Ithaca, NY,
14853-3901.
3. Berger. J. O., Brunero, L. and Wolpert, L.,(1999). Integrated likekihood
methods for eliminating nuisance parameters, Statistical Science, 14, 1-28.
4. Castledine, B. (1981). A Bayesian analysis of multiple-recapture sampling
for a closed population, Biometrika, 67, 197-210.
5. Chao, A. and Bunge, J. (2002). Estimating the Number of species in a
stochatistic Abundance Model. Biometric, 58, 531-539.
6. Chang X. M. and Bruce G. L. (2002). A Poisson model for the coverage
problem with a genomic application, Biometrika, 89, 669-681.
7. Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). The relation
between the number of species and the number of individuals in a random
sample of an animal population. Journal of Animal Ecology 12 42-58.
8. Gelfand, A. E. and Smith. A. F. M. (1990). Sampling based approaches to
calculating marginal densities. J. Am. Statist. Assoc. 85, 398-409.
9. George, E. I., Makov, U. E., and Smith, A. F. M., (1994). Fully Bayesain
hierarchical analysis for exponential families via Monte Carlo computation.
Aspects of Uncertainty-A tribute to D.Lind-ley, Edited by P. R. Freeman
and A. M. Smith.
10. Luca T. (2002). A new Bayesian method for nonparametric capture-recapture
models in presence of heterogeneity. Biometrika 89 807-817.
11. Morris, C. S., (1983). Parametric empirical Bayes inference: Theory and
Applications. Journal of the American Statistical Association, 78, 381, 47-
65.
12. Norris, J. L. and Pollock, K. H. (1998). Nonparametric MLE for Poisson
species abundance models allowing for heterogeneity between species. Eco-logical Applications 8, 1213-1225.
13. Robert, C. P. and Casella, G.(1999). Monte Carlo Statistical Methods. New
York: Springer.
14. Rodrigues, J., Luis A. M., and Lette J. (2001). Hierarchical Bayesian Esti-
mation for the Number of species. Biometrical Journal, 43, 737-746.
15. Sanathanan, L., 1972: Estimating the size of a multinomial population.
The Annals of Mathematical Statistics, 43, 140-152.
16. Sanathanan, L., (1977). Estimating the size of a truncated sample. Journal
of the American Statistical Association, 72, 359, 669-672.
17. Schervish, M. J. and Carlin, B. P.(1992). On the convergence of successive
substitution sampling . Journal of Computational and Graphical Statistics,
1, 111-127.
18. Tanner, M., and Wong, W.(1978). The Calaulation of Posterior Distribu-
tion by Data Augmentation (with discussion). Journal of the American
Statistical Association, 82, 528-550.
19. Tierney, L. (1991). Markov Chain for exploring posterior distributions.
Technical Report, School of Statistics, University of Minnesota.
20. Von Mises. R. (1964). Mathematical Theory of Probability and Statistics.
Ed. H. Heiringer. New York: Academic Press.