| 研究生: |
寧彥傑 Ning, Yen-Chieh |
|---|---|
| 論文名稱: |
具負等效質量慣性矩之微極彈性模型設計 Design of micropolar metamaterials with negative effective mass moment of inertia |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 聲學超材料 、負等效質量慣性矩 、帶隙 |
| 外文關鍵詞: | acoustic metamaterials, negative effective moment of inertia, band gap |
| 相關次數: | 點閱:159 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料(metamaterials)的應用,在這幾年引起廣泛的討論,其中聲學超材料(acoustic metamaterials)領域中的負等效質量密度(mass density)、負等效體積模數(bulk modulus)的探討,更成為學者們重要的研究課題之一。利用系統的直線運動來探討負等效質量密度,可以達到濾波的效果,但本文不同的地方在於,我們利用轉動運動來探討負等效質量慣性矩(mass moment of inertia),也可達到濾波的效果。在本文中,我們建立離散系統和連續體的模型,離散系統的部份我們利用轉動和頻散方程式等效的概念去設計,而連續體模型的部分,我們將具有旋轉效應的微極彈性理論,導入我們的設計中,除此之外,我們將模型的材料組成,設計成自然界中方便取得的材料。最後,我們將設計完後的模型進行波傳分析,以及求解模型的負等效質量慣性矩,並分析其與帶隙(band gap)的關係。
The application of metamaterials has drawn much attention, particularly in the field of acoustic metamaterials. The properties of negative mass density and negative bulk modulus have great application in practice, because it is the basic concept of filters. Generally speaking, using the models of a straight-line motion can verify the filter’s effect. Unlike previous researches, we design a model with rotational effect to prove the existence of filters. We can utilize rotational motion to devise a model which is in virtue of the similarity between mass density and mass moment of inertia. In this thesis, we propose discrete and continuum models to analyze the behavior of wave propagation and the negative effective material properties. In one-dimensional (1D) discrete model, we use the equivalence of dispersive equation to design and analyze the negative effective mass moment of inertia. We also design a two-dimensional (2D) discrete model with negative Poisson’s ratio and negative effective stiffness. We exercise the elastic theory of Cosserat in our continuum models. Moreover, in order to manufacture the models conveniently and cost-effectively, we design it with natural materials. Last but not least, aside from analyzing the behavior of wave propagation and negative effective mass moment of inertia, we also study the relation of band gap between them.
Baker-Jarvis, J., Vanzura, E. J. and Kissick, W. A., Improved technique for determining complex permittivity with the transmission reflection method, IEEE Transactions on Microwave Theory and Techniques 38, 1096-1103 (1990).
Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern. (Springer-Verlag, 1929)
Brillouin, L., Wave Propagation in Periodic Structures. (Dover Publications, Inc., 1953)
Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements, International Journal of Solids and Structures 43, 475-496 (2006).
Chan, C. T., Li, J. and Fung, K. H., On extending the concept of double negativity to acoustic waves, Journal of Zhejiang University Science A 7, 24–28 (2006).
Chang, C. S. and Liao, C. L., Constitutive relation for a particulate medium with the effect of particle rotation, International Journal of Solids and Structures 26, 437-445 (1990).
Cheng, Y., Xu, J. Y. and Liu, X. J., One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Physical Review B 77, 045134 (2008).
Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaerials, Applied Physics Letters 91, 183518 (2007).
Chen, H., Chan, C. T. and Sheng, P., Transformation optics and metamaterials, Nature Materials 9, 387-396 (2010).
Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P. and Zheng, Q. S., Micropolar continuum modelling of bi-dimensional tetrachiral lattices, Proceedings of the Royal Society of London A 470, 20130734 (2014).
Cosserat, E. and Cosserat, F., Théorie des Corps Déformables. (A. Hermann et fils, Paris, 1909)
Cummer, S. A. and Schurig, D., One path to acoustic cloaking, New Journal of Physics 9, 45 (2007).
Ding, Y., Liu, Z., Qiu, C. and Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Physical Review Letters 99, 093904 (2007).
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452-456 (2006).
Forest, S., Homogenization methods and the mechanics of generalized continua -part 2, Theoretical and Applied Mechanics, 28-29, 113-143 (2002).
Hibbeler, R. C., Engineering Mechanics: Dynamics. (Free Press, New York, 1992)
Huang, H. H., Sun, C. T. and Huang, G. L., On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science 47, 610-617 (2009).
Huang, H. H. and Sun, C. T., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine 91, 981-996 (2011).
Huang, H. H. and Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11, 013003 (2009).
Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, International Journal of Engineering Science 17, 573-586 (1979).
Ilcewicz, L. B., Narasimhan, M. N. L. and Wilson, J. B., Micro and macro materials symmetries in generalized continua, International Journal of Engineering Science 24, 97-109 (1986).
Joumma, H. and Ostoja-Starzewski, M., Stress and Couple-stress invariance in non-centrosymmetric micropolar planar elasticity, Proceedings of the Royal Society of London A, 467, 2896-2911 (2011).
Kittel, C., Introduction to Solid State Physics. (Wiley, 1995)
Kushwaha, M. S., Halevi, P., Dobrzynsky, L. and Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Physical Review Letters 71, 2022-2025 (1993).
Lazarov, B. S. and Jensen, J. S., Low-frequency band gaps in chains with attached with non-linear oscillators, International Journal of Non-Linear Mechanics 42, 1186-1193 (2007).
Li, J. and Chan, C. T., Double-negative acoustic metamaterial, Physical Review E 70, 055602 (2004).
Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. and Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz, Science 306, 1351-1353 (2004).
Liu, X. N., Huang, G. L. and Hu, G. K., Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, Journal of Mechanics and Physics of Solids 60, 1907-1921 (2012).
Liu, X. N., Hu, G. K., Huang, G. L. and Sun, C. T., An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters 98, 251907 (2011).
Liu, X. N., Hu, G. K., Sun, C. T. and Huang, G. L., Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, Journal of Sound and Vibration 330, 2536-2553 (2011).
Liu, Z., Chan, C. T. and Sheng, P., Analytic model of phononic crystals with local resonances, Physical Review B 71, 014103 (2005).
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289, 1734–1736 (2000).
Lu, M. H., Feng, L. and Chen, Y. F., Phononic crystals and acoustic metamaterials, Materials Today 12, 34-42 (2009).
Milton, G. W. and Willis, J. R., On modifications of Newton’s second law and linear continuum elastodynamics, Proceedings of the Royal Society of London A 463, 855-880 (2007).
Nowacki, W., Theory of Asymmetric Elasticity. (Pergamon Press, 1986)
Ostoja-Starzewski, M. and Jasiuk, I., Stress invariance in planar Crosserat elasticity, Proceedings of the Royal Society of London A 451, 453-470 (1995).
Pendry, J. B., Holden, A. J. and Stewart, W. J., Extremely low frequency plasmons in metallic microstructures, Physical Review Letters 76, 4773-4776 (1996).
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).
Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85, 3966-3969 (2000).
Peng, P., Mei, J. and Wu, Y., Lumped model for rotational modes in phononic crystals, Physical Review B 86, 134304 (2012).
Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. and Hladky-Hennion, A. C., Phononic crystals and manipulation of sound, Physica Status Solidi C 6, 2080-2085 (2009).
Sakoda, K., Optical Properties of Photonic Crystals. (Springer, 2005)
Shamonina, E. and Solymar, L., Metamaterials: How the subject started, Metamaterials 1, 12-18 (2007).
Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. (Springer, 2006)
Sheng, P., Mei, J., Liu, Z. and Wen, W., Dynamic mass density and acoustic metamaterials, Physica B 394, 256-261 (2007).
Sihvola, A., Metamaterials in electromagnetics, Metamaterials 1, 2-11 (2007).
Smith, D. R., Pendry, J. B. and Wiltshire, M. C. K., Metamaterials and negative refractive index, Science 305, 788-792 (2004).
Smith, D. R. and Schultz, S., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Physical Review B 65, 195104 (2002).
Suiker, A. S. J., Metrikine, A. V. and Borst, R. D., Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models, International Journal of Solids and Structures 38, 1563-1583 (2001).
Thomas, E. L., Applied physics: bubbly but quiet, Nature 462, 990-991 (2009).
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. and Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376-379 (2008).
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Soviet Physics Uspekhi 10, 509-514 (1968).
Vincent, J. H., On the construction of a mechanical model to illustrate Helmholtz’s theory of dispersion, Philosophical Magazine 46, 557–563 (1898).
Vukusic, P. and Sambles, J. R., Photonic structures in biology, Nature 424, 852-855 (2003).
Wu, T. H., Chen, T. and Weng, C. N., Green’s functions and Eshelby tensors for ellipsoidal inclusion in a non-centrosymmetric and anisotropic micropolar medium, International Journal of Solids and Structures 64-65, 1-8 (2015).
Xia, Z., Zhang, Y. and Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, International Journal of Solids and Structures 40, 1907-1921 (2003).
Yao, S., Zhou, X. and Hu, G., Experimental study on negative effective mass in a 1D mass-spring system, New Journal of Physics 10, 043020 (2008).
Yuan, X. and Tomita, Y., A homogenization method for analysis of heterogeneous Cosserat materials, Key Engineering Materials 180, 53-58 (2000).
Yuan, X. and Tomita, Y., Effective properties of Cosserat composites with periodic microstructure, Mechanics Research Communications 28, 265-270 (2001).
Zhu, R., Huang, H. H., Huang, G. L. and Sun, C. T., Microstructure continuum modeling of an elastic metamaterial, International Journal of Engineering Science 49, 1477-1485 (2011).
唐文聰,圖解機構辭典,全華科技圖書股份有限公司,1986。
劉建均,多振態聲學超材料之計算與模擬,國立成功大學土木工程研究所碩士論文,2012。
張博威,具多重負頻帶之彈性超材料數值模擬,國立成功大學土木工程研究所碩士論文,2013。
彭昱翔,週期性微極彈性材料之等效參數數值模擬,國立成功大學土木工程研究所碩士論文,2014。
吳宗憲,Cosserat彈性介質之格林函數及內含物問題,國立成功大學土木工程研究所碩士論文,2014。