簡易檢索 / 詳目顯示

研究生: 寧彥傑
Ning, Yen-Chieh
論文名稱: 具負等效質量慣性矩之微極彈性模型設計
Design of micropolar metamaterials with negative effective mass moment of inertia
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 聲學超材料負等效質量慣性矩帶隙
外文關鍵詞: acoustic metamaterials, negative effective moment of inertia, band gap
相關次數: 點閱:159下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料(metamaterials)的應用,在這幾年引起廣泛的討論,其中聲學超材料(acoustic metamaterials)領域中的負等效質量密度(mass density)、負等效體積模數(bulk modulus)的探討,更成為學者們重要的研究課題之一。利用系統的直線運動來探討負等效質量密度,可以達到濾波的效果,但本文不同的地方在於,我們利用轉動運動來探討負等效質量慣性矩(mass moment of inertia),也可達到濾波的效果。在本文中,我們建立離散系統和連續體的模型,離散系統的部份我們利用轉動和頻散方程式等效的概念去設計,而連續體模型的部分,我們將具有旋轉效應的微極彈性理論,導入我們的設計中,除此之外,我們將模型的材料組成,設計成自然界中方便取得的材料。最後,我們將設計完後的模型進行波傳分析,以及求解模型的負等效質量慣性矩,並分析其與帶隙(band gap)的關係。

    The application of metamaterials has drawn much attention, particularly in the field of acoustic metamaterials. The properties of negative mass density and negative bulk modulus have great application in practice, because it is the basic concept of filters. Generally speaking, using the models of a straight-line motion can verify the filter’s effect. Unlike previous researches, we design a model with rotational effect to prove the existence of filters. We can utilize rotational motion to devise a model which is in virtue of the similarity between mass density and mass moment of inertia. In this thesis, we propose discrete and continuum models to analyze the behavior of wave propagation and the negative effective material properties. In one-dimensional (1D) discrete model, we use the equivalence of dispersive equation to design and analyze the negative effective mass moment of inertia. We also design a two-dimensional (2D) discrete model with negative Poisson’s ratio and negative effective stiffness. We exercise the elastic theory of Cosserat in our continuum models. Moreover, in order to manufacture the models conveniently and cost-effectively, we design it with natural materials. Last but not least, aside from analyzing the behavior of wave propagation and negative effective mass moment of inertia, we also study the relation of band gap between them.

    中文摘要 i Abstract ii 誌謝 vii 目錄 viii 表目錄 x 圖目錄 xi 符號表 xiv 第一章 緒論 1 1.1 文獻回顧與相關研究 1 1.2 研究動機 4 1.3 論文簡介 6 第二章 離散模型分析 7 2.1 一維離散模型介紹 9 2.2 一維離散模型之負等效質量慣性矩 10 2.3 一維離散模型之頻散圖分析 14 2.4 一維離散模型之能量分析 19 2.5 二維離散模型探討 26 第三章 Cosserat彈性理論 29 3.1 Cosserat彈性理論的自由度 29 3.2 Cosserat彈性理論的材料組成律 32 3.3 Cosserat彈性理論的平衡方程式 34 3.4 二維Cosserat彈性理論的平均值 37 3.5 Cosserat彈性理論的等效材料係數 45 第四章 連體模型分析 48 4.1 二維連體模型介紹 49 4.2 布洛赫定理(Bloch’s theorem) 51 4.3 布里淵區(Brillouin zone) 52 4.4 數值模擬參數設定 56 4.5 頻散圖分析 60 4.6 單位體積之負等效質量慣性矩分析 61 4.7 變形分析 65 4.8 其他參數分析 66 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 73 參考文獻 74 附錄A:常見物體形狀之質量慣性矩形式 80 附錄B:(2.2.1)式、(2.2.2)式和(2.2.10)式之推導 81 附錄C:相關文獻之負等效勁度推導 84 附錄D:二維離散模型之負等效勁度推導 87 附錄E:二維離散模型之負波松比推導 90 附錄F:二維離散模型之負材料參數數值模擬 91

    Baker-Jarvis, J., Vanzura, E. J. and Kissick, W. A., Improved technique for determining complex permittivity with the transmission reflection method, IEEE Transactions on Microwave Theory and Techniques 38, 1096-1103 (1990).

    Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern. (Springer-Verlag, 1929)

    Brillouin, L., Wave Propagation in Periodic Structures. (Dover Publications, Inc., 1953)

    Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements, International Journal of Solids and Structures 43, 475-496 (2006).

    Chan, C. T., Li, J. and Fung, K. H., On extending the concept of double negativity to acoustic waves, Journal of Zhejiang University Science A 7, 24–28 (2006).

    Chang, C. S. and Liao, C. L., Constitutive relation for a particulate medium with the effect of particle rotation, International Journal of Solids and Structures 26, 437-445 (1990).

    Cheng, Y., Xu, J. Y. and Liu, X. J., One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Physical Review B 77, 045134 (2008).

    Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaerials, Applied Physics Letters 91, 183518 (2007).

    Chen, H., Chan, C. T. and Sheng, P., Transformation optics and metamaterials, Nature Materials 9, 387-396 (2010).

    Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P. and Zheng, Q. S., Micropolar continuum modelling of bi-dimensional tetrachiral lattices, Proceedings of the Royal Society of London A 470, 20130734 (2014).

    Cosserat, E. and Cosserat, F., Théorie des Corps Déformables. (A. Hermann et fils, Paris, 1909)

    Cummer, S. A. and Schurig, D., One path to acoustic cloaking, New Journal of Physics 9, 45 (2007).

    Ding, Y., Liu, Z., Qiu, C. and Shi, J., Metamaterial with simultaneously negative bulk modulus and mass density, Physical Review Letters 99, 093904 (2007).

    Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452-456 (2006).

    Forest, S., Homogenization methods and the mechanics of generalized continua -part 2, Theoretical and Applied Mechanics, 28-29, 113-143 (2002).

    Hibbeler, R. C., Engineering Mechanics: Dynamics. (Free Press, New York, 1992)

    Huang, H. H., Sun, C. T. and Huang, G. L., On the negative effective mass density in acoustic metamaterials, International Journal of Engineering Science 47, 610-617 (2009).

    Huang, H. H. and Sun, C. T., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine 91, 981-996 (2011).

    Huang, H. H. and Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physics 11, 013003 (2009).

    Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, International Journal of Engineering Science 17, 573-586 (1979).

    Ilcewicz, L. B., Narasimhan, M. N. L. and Wilson, J. B., Micro and macro materials symmetries in generalized continua, International Journal of Engineering Science 24, 97-109 (1986).

    Joumma, H. and Ostoja-Starzewski, M., Stress and Couple-stress invariance in non-centrosymmetric micropolar planar elasticity, Proceedings of the Royal Society of London A, 467, 2896-2911 (2011).

    Kittel, C., Introduction to Solid State Physics. (Wiley, 1995)

    Kushwaha, M. S., Halevi, P., Dobrzynsky, L. and Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Physical Review Letters 71, 2022-2025 (1993).

    Lazarov, B. S. and Jensen, J. S., Low-frequency band gaps in chains with attached with non-linear oscillators, International Journal of Non-Linear Mechanics 42, 1186-1193 (2007).

    Li, J. and Chan, C. T., Double-negative acoustic metamaterial, Physical Review E 70, 055602 (2004).

    Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. and Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz, Science 306, 1351-1353 (2004).

    Liu, X. N., Huang, G. L. and Hu, G. K., Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, Journal of Mechanics and Physics of Solids 60, 1907-1921 (2012).

    Liu, X. N., Hu, G. K., Huang, G. L. and Sun, C. T., An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters 98, 251907 (2011).

    Liu, X. N., Hu, G. K., Sun, C. T. and Huang, G. L., Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, Journal of Sound and Vibration 330, 2536-2553 (2011).

    Liu, Z., Chan, C. T. and Sheng, P., Analytic model of phononic crystals with local resonances, Physical Review B 71, 014103 (2005).

    Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., Locally resonant sonic materials, Science 289, 1734–1736 (2000).

    Lu, M. H., Feng, L. and Chen, Y. F., Phononic crystals and acoustic metamaterials, Materials Today 12, 34-42 (2009).

    Milton, G. W. and Willis, J. R., On modifications of Newton’s second law and linear continuum elastodynamics, Proceedings of the Royal Society of London A 463, 855-880 (2007).

    Nowacki, W., Theory of Asymmetric Elasticity. (Pergamon Press, 1986)

    Ostoja-Starzewski, M. and Jasiuk, I., Stress invariance in planar Crosserat elasticity, Proceedings of the Royal Society of London A 451, 453-470 (1995).

    Pendry, J. B., Holden, A. J. and Stewart, W. J., Extremely low frequency plasmons in metallic microstructures, Physical Review Letters 76, 4773-4776 (1996).

    Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47, 2075-2084 (1999).

    Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85, 3966-3969 (2000).

    Peng, P., Mei, J. and Wu, Y., Lumped model for rotational modes in phononic crystals, Physical Review B 86, 134304 (2012).

    Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. and Hladky-Hennion, A. C., Phononic crystals and manipulation of sound, Physica Status Solidi C 6, 2080-2085 (2009).

    Sakoda, K., Optical Properties of Photonic Crystals. (Springer, 2005)

    Shamonina, E. and Solymar, L., Metamaterials: How the subject started, Metamaterials 1, 12-18 (2007).

    Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. (Springer, 2006)

    Sheng, P., Mei, J., Liu, Z. and Wen, W., Dynamic mass density and acoustic metamaterials, Physica B 394, 256-261 (2007).

    Sihvola, A., Metamaterials in electromagnetics, Metamaterials 1, 2-11 (2007).

    Smith, D. R., Pendry, J. B. and Wiltshire, M. C. K., Metamaterials and negative refractive index, Science 305, 788-792 (2004).

    Smith, D. R. and Schultz, S., Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Physical Review B 65, 195104 (2002).

    Suiker, A. S. J., Metrikine, A. V. and Borst, R. D., Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models, International Journal of Solids and Structures 38, 1563-1583 (2001).

    Thomas, E. L., Applied physics: bubbly but quiet, Nature 462, 990-991 (2009).

    Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. and Zhang, X., Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376-379 (2008).

    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Soviet Physics Uspekhi 10, 509-514 (1968).

    Vincent, J. H., On the construction of a mechanical model to illustrate Helmholtz’s theory of dispersion, Philosophical Magazine 46, 557–563 (1898).

    Vukusic, P. and Sambles, J. R., Photonic structures in biology, Nature 424, 852-855 (2003).

    Wu, T. H., Chen, T. and Weng, C. N., Green’s functions and Eshelby tensors for ellipsoidal inclusion in a non-centrosymmetric and anisotropic micropolar medium, International Journal of Solids and Structures 64-65, 1-8 (2015).

    Xia, Z., Zhang, Y. and Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, International Journal of Solids and Structures 40, 1907-1921 (2003).

    Yao, S., Zhou, X. and Hu, G., Experimental study on negative effective mass in a 1D mass-spring system, New Journal of Physics 10, 043020 (2008).

    Yuan, X. and Tomita, Y., A homogenization method for analysis of heterogeneous Cosserat materials, Key Engineering Materials 180, 53-58 (2000).

    Yuan, X. and Tomita, Y., Effective properties of Cosserat composites with periodic microstructure, Mechanics Research Communications 28, 265-270 (2001).

    Zhu, R., Huang, H. H., Huang, G. L. and Sun, C. T., Microstructure continuum modeling of an elastic metamaterial, International Journal of Engineering Science 49, 1477-1485 (2011).

    唐文聰,圖解機構辭典,全華科技圖書股份有限公司,1986。

    劉建均,多振態聲學超材料之計算與模擬,國立成功大學土木工程研究所碩士論文,2012。

    張博威,具多重負頻帶之彈性超材料數值模擬,國立成功大學土木工程研究所碩士論文,2013。

    彭昱翔,週期性微極彈性材料之等效參數數值模擬,國立成功大學土木工程研究所碩士論文,2014。

    吳宗憲,Cosserat彈性介質之格林函數及內含物問題,國立成功大學土木工程研究所碩士論文,2014。

    下載圖示 校內:2018-07-22公開
    校外:2018-07-22公開
    QR CODE