| 研究生: |
黃冠維 Huang, Kwen-Wei |
|---|---|
| 論文名稱: |
台灣半導體製造業經營績效評估 A Study of the Efficiency Evaluation of Taiwan’s Semiconductor Manufacturing Industry |
| 指導教授: |
林泰宇
Lin, Tai-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 半導體 、半導體製造 、動態網絡資料包絡分析法 、範圍方向估計方向距離函數(RDM DDF) |
| 外文關鍵詞: | Semiconductor, Data Envelopment Analysis, Dynamic Network DEA, RDM DDF |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體是數位時代中不可或缺的資源,也是科技發展的基石,台灣擁有完整的半導體產業鏈,並且在全球半導體製造領域中具有重要地位。全球半導體產業近兩、三年快速發展,可歸因於5G手機、物聯網、電動車和高速運算等終端需求強勁,加上2020年全球受到新冠疫情衝擊,居家辦公需求增加,以及供應鏈問題所造成的漲價效應,帶動了半導體銷售額大幅增加,然而在需求成長背後,國內半導體製造業者仍面臨兩大隱憂,首先為短期週期性風險,其次為中長期各國扶植本土半導體供應鏈的挑戰,前者為供需兩端資訊不對稱下產生的庫存波動,後者為中美貿易戰與疫情後各國的國家戰略調整,因此審慎、有效評估自身資源運用效率,儼然成為半導體製造業者面對未來挑戰的重要的課題。
本文將以半導體製造產業為研究對象,研究22家台灣上市櫃半導體製造公司於2016年至2020年的經營效率,透過Two-stage Dynamic RDM DDF model,解決每股盈餘可能為負值資料的問題,並在生產階段產出項中採用無形資產,在既有文獻衡量專利產出的基礎上,多衡量企業在商譽上的產出。總結來說,本研究的結果如下:
1.台灣半導體製造業研究期間平均整體效率值為0.60,並呈現降低趨勢。在個別公司上,台積電與環球晶效率值為1,為效率前緣公司。
2.台灣半導體製造業研究期間生產階段平均效率值為0.74,市場階段平均效率值為0.48,並且根據Wilcoxon等級和檢定結果,半導體製造業在生產階段效率顯著高於市場階段效率。
3.生產階段上,員工人數是最需要改善的部分,平均而言建議減少12%,而市場階段上,每股盈餘和年均股價分別建議應提升35%和36%。
Taiwan has a complete semiconductor industry chain and has the most production value in the semiconductor manufacturing industry in the world. However, semiconductor manufacturers still face short-term cyclical risks and the challenge that various countries begin to establish their semiconductor supply chains in the long run. Therefore, the evaluation of resource utilization has become a critical management issue for semiconductor manufacturers. In this study, the semiconductor manufacturing industry is the research subject. Through the Two-stage Dynamic RDM DDF model to study the operating efficiency of 22 Taiwan semiconductor manufacturers from 2016 to 2020. The results show that (1). Taiwan's semiconductor manufacturing industry's overall efficiency value was 0.60 and showed a downward trend during the research period. (2). Companies like TSMC and Globalwafers have the highest efficiency levels. (3). In the production stage, the efficiency value is 0.74, while in the market stage, it is 0.48. According to the Wilcoxon sum rank test results, the efficiency of the production stage is significantly better than that of the market stage. (4). The number of employees in the production stage needs to be improved the most. On average, it should be reduced by 12%. For the market stage, both the EPS and stock price should be increased by 35% and 36%, respectively. In conclusion, Taiwan's semiconductor manufacturing companies need to improve their human resource management and focus on profitability. More importantly, companies should properly plan long-term business strategies to build market confidence.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
Chen, Y.-S., & Chen, B.-Y. (2011). Applying DEA, MPI, and grey model to explore the operation performance of the Taiwanese wafer fabrication industry. Technological Forecasting and Social Change, 78(3), 536-546.
Chen, Y. S., & Chen, B. Y. (2009). Using data envelopment analysis (DEA) to evaluate the operational performance of the wafer fabrication industry in Taiwan. Journal of Manufacturing Technology Management, 20(4), 475-488.
Chiu, C.-R., Fang, C.-L., Tsang, S.-S., & Chen, Y.-F. (2018). Performance evaluation of the semiconductor industry based on a metafrontier approach. Technological and Economic Development of Economy, 24(3), 825-843.
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51(3), 229-240.
Dash Wu, D., & Ho, C. T. B. (2007). Productivity and efficiency analysis of Taiwan's integrated circuit industry. International Journal of Productivity and Performance Management, 56(8), 715-730.
Fang, T.-Y. (2020). Who Is the Keyman? Integrating Two-Stage DEA and Social Network Analysis to Evaluate Operational and Environmental Efficiency in the Semiconductor Industry. Mathematical Problems in Engineering, 2020, 2926357.
Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics Letters, 50(1), 65-70.
Färe, R., & Grosskopf, S. (2004). Efficiency and productivity: New directions. In: Boston, MA: Kluwer Academic Publishers.
Färe, R., & Grosskopf, S. (2010). Directional distance functions and slacks-based measures of efficiency. European Journal of Operational Research, 200(1), 320-322.
Färe, R., Grosskopf, S., & Whittaker, G. (2007). Network dea. In Modeling data irregularities and structural complexities in data envelopment analysis (pp. 209-240): Springer.
Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
Hung, S.-W., He, D.-S., & Lu, W.-M. (2014). Evaluating the dynamic performances of business groups from the carry-over perspective: A case study of Taiwan׳s semiconductor industry. Omega, 46, 1-10.
Klopp, G. A. (1985). The analysis of the efficiency of productive systems with multiple inputs and outputs. University of Illinois at Chicago.
Koopmans, T. i. C. (1957). Three Essays on the State of Economic Science. New York: McGraw-Hil1 Book Company. In: Inc.
Li, H., He, H., Shan, J., & Cai, J. (2019). Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis. Socio-Economic Planning Sciences, 66, 136-148.
Lin, F., Lin, S.-W., & Lu, W.-M. (2018). Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis. Sustainability, 10(11).
Lin, R., & Chen, Z. (2015). Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function. Journal of the Operational Research Society, 66(9), 1506-1510.
Liu, F.-H. F., & Wang, P.-h. (2008). DEA Malmquist productivity measure: Taiwanese semiconductor companies. International Journal of Production Economics, 112(1), 367-379.
Lu, W.-M., & Hung, S.-W. (2010). Assessing the performance of a vertically disintegrated chain by the DEA approach–a case study of Taiwanese semiconductor firms. International Journal of Production Research, 48(4), 1155-1170.
Neshati, R. (2013, 28 July-1 Aug. 2013). Benchmarking R&D in the semiconductor industry using DEA. Paper presented at the 2013 Proceedings of PICMET '13: Technology Management in the IT-Driven Services (PICMET).
Portela, M. C. A. S., Thanassoulis, E., & Simpson, G. (2004). Negative data in DEA: a directional distance approach applied to bank branches. Journal of the Operational Research Society, 55(10), 1111-1121.
Seiford, L. M., & Zhu, J. (2005). A response to comments on modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 161(2), 579-581.
Sueyoshi, T., & Ryu, Y. (2020). Performance Assessment of the Semiconductor Industry: Measured by DEA Environmental Assessment. Energies, 13(22).
Sueyoshi, T., & Sekitani, K. (2005). Returns to scale in dynamic DEA. European Journal of Operational Research, 161(2), 536-544.
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509.
Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243-252.
Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3), 145-156.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Wu, C.-C., Li, C.-C., & Wang, T.-H. (2007). Multifactor performance measure model with an application to semiconductor industry performance. Paper presented at the Proceedings of the 11th WSEAS International Conference on Applied Mathematics, Dallas, Texas.
Wu, H.-Y., Chen, I. S., Chen, J.-K., & Chien, C.-F. (2019). The R&D efficiency of the Taiwanese semiconductor industry. Measurement, 137, 203-213.
Yu, M.-M. (2004). Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors. Journal of Air Transport Management, 10(5), 295-303.
鍾榮峰(2011年10月5日)。資策會:台晶圓代工產值估年增21% 居全球市占第一。中央通訊社。檢自https://mic.iii.org.tw/
呂俊儀(2022年2月17日)。2021年台灣半導體產值成長優於全球平均總產值突破4兆元。Yahoo新聞。檢自https://reurl.cc/momV17
凌郁涵(2022年2月11日)。IC Insights:今年半導體銷售預期增長11%。鉅亨網。檢自https://news.cnyes.com/news/id/4812520
涂志豪(2022年12月2日)。全球半導體市場規模明年衝6,000億美元。工商時報。檢自https://ctee.com.tw/news/tech/558074.html
校內:2027-07-01公開