簡易檢索 / 詳目顯示

研究生: 王于宸
Wang, Yu-Chen
論文名稱: 以旋轉塗佈法製備高介電高熵(Al, Ti, V, Zr, Hf)Ox薄膜並應用於先進MOS及MOSFET元件
Spin Coating Fabrication of High-k High-entropy (Al, Ti, V, Zr, Hf)Ox Films for Advanced MOS and MOSFET Devices
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 75
中文關鍵詞: (Al, Ti, V, Zr, Hf)Ox薄膜旋轉塗佈熱穩定性金氧半電容金氧半場效電晶體
外文關鍵詞: (Al, Ti, V, Zr, Hf)Ox film, spin-coating, thermal stability, metal-oxide-semiconductor device, metal-oxide-semiconductor field effect transistor
相關次數: 點閱:121下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究利用簡便的溶液製程,以旋轉塗佈法沉積高熵高介電常數的(Al, Ti, V, Zr, Hf)Ox薄膜,並製備成金氧半電容(MOS)以及金氧半場效電晶體(MOSFET)以研究其電性及熱穩定性。透過測試各式各樣的加溫製程參數,包含旋轉塗佈後的烤乾溫度、烤乾後的退火溫度以及混合氣退火(FGA)的溫度和製程氣壓,高熵氧化物(HEO)薄膜性質得到最佳化。其MOS元件在電容—電壓(C-V)及電流—電壓(I-V)量測中表現出優異的電性,並經計算得出在1 kHz之下擁有約為33的介電常數。透過XPS分析,得知薄膜的表面的組成元素及其價態(Al3+, Ti4+, V4+/V5+, Zr4+, Hf4+, 以及O2-)。HEO薄膜的熱穩定性則藉由 900 °C的5秒快速熱退火處理(RTA)來進行探討。經過RTA的HEO薄膜仍保持近乎非晶質的狀態,並且再經過FGA後表現出改善的C-V特性以及可接受的漏電流值。而HEO製備而成MOSFET元件,展現出1.75 V的閾值電壓、102的開關電流比、149 cm2/Vs的飽和遷移率以及214 mV/dec的亞閾值擺幅。

    This study reports the fabrication of high-k high-entropy (Al, Ti, V, Zr, Hf)Ox films through spin-coating and the study of electrical properties and thermal stability of resulting advanced MOS and MOSFET devices. Various annealing conditions were studied, including drying temperature after spin-coating, annealing temperature after drying, and forming gas annealing (FGA) profiles, to optimize the high-entropy oxide (HEO) films. The favorable HEO-film-resulting MOS devices exhibited excellent capacitance-voltage (C-V) and current-voltage (I-V) characteristics; the deduced dielectric constant at 1 kHZ was approximately 33. The valence states of all the constitutive elements (i.e., Al3+, Ti4+, V4+/V5+, Zr4+, Hf4+, and O2-) were determined through XPS. The HEO films were further subjected to rapid thermal annealing (RTA) at 900 °C for 5 s to affirm their thermal stability. The sample after both RTA and FGA exhibited the robust C-V and reasonably low I-V characteristics. The threshold voltage of 1.75 V, on/off ratio of 102, saturated mobility of 149 cm2/Vs, and subthreshold swing of 214 mV/dec was obtained for the resulting MOSFETs.

    摘要 II Abstract III 致謝 IV Content V Figure Contents VIII Table Contents XII Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation 4 Chapter 2 Theory and Literature Review 5 2.1 MOS capacitor 5 2.2 Capacitance-Voltage characteristics in MOS capacitor 6 2.3 High-k Gate dielectrics 11 2.3.1 High-k dielectrics requirement 11 2.3.2 Defects in high-k dielectrics 14 2.4 Overview of MOSFETs 17 2.4.1 Structure of MOSFETs 17 2.4.2 Operation principles of MOSFETs 18 2.4.3 Characteristics of MOSFETs 20 2.5 High entropy Oxides 23 2.5.1 High entropy effect 23 2.5.2 Applications for high-entropy oxides 25 Chapter 3 Experimental Methods 33 3.1 Material 33 3.2 MOS device fabrication 34 3.2.1 Substrate cleaning 34 3.2.2 Synthesis of (Al, Ti, V, Zr, Hf)Ox films 35 3.2.3 Metal gate deposition 36 3.2.4 Forming gas annealing (FGA) 37 3.2.5 Rapid thermal annealing (RTA) 38 3.3 MOSFET device fabrication 39 3.4 Characterization 41 3.4.1 X-ray Diffraction (XRD) Analysis 41 3.4.2 Electrical probe station 42 3.4.3 I-V measurement 44 3.4.4 C-V measurement 45 3.4.5 X-ray Photoelectron Spectroscopy (XPS) 46 3.4.6 Focused ion beam (FIB) 47 3.4.7 Transmission electron microscopy (TEM) 48 Chapter 4 Results and Discussion 49 4.1 HEO Films optimization 49 4.1.1 Drying temperature 49 4.1.2 Annealing temperature 51 4.1.3 Forming gas annealing condition 54 4.2 XPS analysis 59 4.3 Thermal stability 61 4.4 Electrical properties of HEO-based MOSFETs 66 Chapter 5 Conclusions and Future Work 69 Chapter 6 References 71

    [1] M.M. Waldrop, The chips are down for Moore’s law, Nature News, 530 (2016) 144-177.
    [2] M. Moore, International roadmap for devices and systems, Accessed: Jan, (2020).
    [3] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, Advanced gate dielectric materials for sub-100 nm CMOS, Digest. International Electron Devices Meeting, IEEE, (2002) 625-628.
    [4] S.N. Supardan, Study of High-k Dielectrics and their Interfaces on Semiconductors for Device Applications, The University of Liverpool (United Kingdom), (2019).
    [5] S. Tayal, G. Vibhu, S. Meena, R. Gupta, Optimization of device dimensions of high-k gate dielectric based dg-tfet for improved analog/rf performance, Silicon, 14 (2022) 3515-3521.
    [6] C.H. Choi, T. Kim, S. Ueda, Y.-S. Shiah, H. Hosono, J. Kim, J.K. Jeong, High-Performance Indium Gallium Tin Oxide Transistors with an Al2O3 Gate Insulator Deposited by Atomic Layer Deposition at a Low Temperature of 150° C: Roles of Hydrogen and Excess Oxygen in the Al2O3 Dielectric Film, ACS Applied Materials & Interfaces, 13 (2021) 28451-28461.
    [7] S. Li, Y. Lin, Y. Wu, X. Li, W. Tian, Ni doping significantly improves dielectric properties of La2O3 films, Journal of Alloys and Compounds, 822 (2020) 153469.
    [8] K. Kandpal, N. Gupta, J. Singh, C. Shekhar, On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric, Journal of Electronic Materials, 49 (2020) 3156-3164.
    [9] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, J. Peng, Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors, Applied Physics Letters, 112 (2018) 103503.
    [10] S.M. Sze, Y. Li, K.K. Ng, Physics of semiconductor devices, John wiley & sons, (2006).
    [11] D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill ,(2003).
    [12] H. Wong, H. Iwai, On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors, Microelectronic Engineering, 83 (2006) 1867-1904.
    [13] J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Reports on Progress in Physics, 69 (2006) 327-396.
    [14] J. Lin, J. Cheng, P. Li, W. Chen, H. Huang, Study on SrTiO3 film for the application of power devices, Superlattices and Microstructures, 130 (2019) 168-174.
    [15] J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications, Materials Science and Engineering: R: Reports, 88 (2015) 1-41.
    [16] J. Robertson, Interfaces and defects of high-K oxides on silicon, Solid-State Electronics, 49 (2005) 283-293.
    [17] G. He, L. Zhu, Z. Sun, Q. Wan, L. Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology, Progress in Materials Science, 56 (2011) 475-572.
    [18] M. Houssa, L. Pantisano, L.Å. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions, Materials Science and Engineering: R: Reports, 51 (2006) 37-85.
    [19] B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Transactions on Electron Devices, 27 (1980) 606-608.
    [20] S. Jiang, G. He, M. Liu, L. Zhu, S. Liang, W. Li, Z. Sun, M. Tian, Interface Modulation and Optimization of Electrical Properties of HfGdO/GaAs Gate Stacks by ALD‐Derived Al2O3 Passivation Layer and Forming Gas Annealing, Advanced Electronic Materials, 4 (2018) 1700543.
    [21] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, (2015).
    [22] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Entropy-stabilized oxides, Nat Commun, 6 (2015) 8485-8493.
    [23] N. Dragoe, D. Bérardan, Order emerging from disorder, Science, 366 (2019) 573-574.
    [24] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier (2019).
    [25] A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilised perovskite type oxides, Journal of the European Ceramic Society, 38 (2018) 2318-2327.
    [26] A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties, Adv Mater, 31 (2019) 1806236.
    [27] Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, B. Breitung, High entropy oxides as anode material for Li-ion battery applications: A practical approach, Electrochemistry Communications, 100 (2019) 121-125.
    [28] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, High entropy oxides for reversible energy storage, Nat Commun, 9 (2018) 3400-3408.
    [29] Y. Dong, K. Ren, Y. Lu, Q. Wang, J. Liu, Y. Wang, High-entropy environmental barrier coating for the ceramic matrix composites, Journal of the European Ceramic Society, 39 (2019) 2574-2579.
    [30] J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, High-entropy fluorite oxides, Journal of the European Ceramic Society, 38 (2018) 3578-3584.
    [31] C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics, Nature Reviews Materials, 5 (2020) 295-309.
    [32] Z. Zhang, S. Yang, X. Hu, H. Xu, H. Peng, M. Liu, B.P. Thapaliya, K. Jie, J. Zhao, J. Liu, H. Chen, Y. Leng, X. Lu, J. Fu, P. Zhang, S. Dai, Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides, Chemistry of Materials, 31 (2019) 5529-5536.
    [33] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, Y. Jia, A new class of spinel high-entropy oxides with controllable magnetic properties, Journal of Magnetism and Magnetic Materials, 497 (2020) 165884.
    [34] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, physica status solidi (RRL) - Rapid Research Letters, 10 (2016) 328-333.
    [35] Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, S. Zhou, Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic, Applied Physics Letters, 115 (2019) 223901.
    [36] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides, Ceramics International, 46 (2020) 7430-7437.
    [37] Z.-W. Huang, K.-S. Chang, Spin-coating for fabrication of high-entropy high-k (AlTiVZrHf) Ox films on Si for advanced gate stacks, Ceramics International, 47 (2021) 22558-22566.
    [38] K.S. Shamala, L.C.S. Murthy, K. Narasimha Rao, Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method, Materials Science and Engineering: B, 106 (2004) 269-274.
    [39] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), Journal of Electron Spectroscopy and Related Phenomena, 135 (2004) 167-175.
    [40] I. Kim, J. Koo, J. Lee, H. Jeon, A Comparison of Al2O3/HfO2and Al2O3/ZrO2Bilayers Deposited by the Atomic Layer Deposition Method for Potential Gate Dielectric Applications, Japanese Journal of Applied Physics, 45 (2006) 919-925.
    [41] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, K. Koumoto, Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution, Journal of Materials Chemistry, 13 (2003) 608-613.
    [42] R.B. Fair, Rapid thermal processing: science and technology, Academic Press, (2012).
    [43] D. Triyoso, R. Gregory, M. Park, K. Wang, S. Lee, Physical and Electrical Properties of Atomic-Layer-Deposited Hf x Zr1− x O2 with TEMAHf, TEMAZr, and Ozone, Journal of The Electrochemical Society, 155 (2007) H43-H46.
    [44] P. Jin, G. He, D. Xiao, J. Gao, M. Liu, J. Lv, Y. Liu, M. Zhang, P. Wang, Z. Sun, Microstructure, optical, electrical properties, and leakage current transport mechanism of sol–gel-processed high- k HfO 2 gate dielectrics, Ceramics International, 42 (2016) 6761-6769.
    [45] L. Xifeng, X. Enlong, Z. Jianhua, Low-Temperature Solution-Processed Zirconium Oxide Gate Insulators for Thin-Film Transistors, IEEE Transactions on Electron Devices, 60 (2013) 3413-3416.
    [46] A. Kumar, S. Mondal, S.G. Kumar, K.S.R. Koteswara Rao, High performance sol–gel spin-coated titanium dioxide dielectric based MOS structures, Materials Science in Semiconductor Processing, 40 (2015) 77-83.
    [47] O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafría, G. Bersuker, Leakage current through the poly-crystalline HfO2: Trap densities at grains and grain boundaries, Journal of Applied Physics, 114 (2013) 134503.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE