| 研究生: |
王于宸 Wang, Yu-Chen |
|---|---|
| 論文名稱: |
以旋轉塗佈法製備高介電高熵(Al, Ti, V, Zr, Hf)Ox薄膜並應用於先進MOS及MOSFET元件 Spin Coating Fabrication of High-k High-entropy (Al, Ti, V, Zr, Hf)Ox Films for Advanced MOS and MOSFET Devices |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | (Al, Ti, V, Zr, Hf)Ox薄膜 、旋轉塗佈 、熱穩定性 、金氧半電容 、金氧半場效電晶體 |
| 外文關鍵詞: | (Al, Ti, V, Zr, Hf)Ox film, spin-coating, thermal stability, metal-oxide-semiconductor device, metal-oxide-semiconductor field effect transistor |
| 相關次數: | 點閱:121 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究利用簡便的溶液製程,以旋轉塗佈法沉積高熵高介電常數的(Al, Ti, V, Zr, Hf)Ox薄膜,並製備成金氧半電容(MOS)以及金氧半場效電晶體(MOSFET)以研究其電性及熱穩定性。透過測試各式各樣的加溫製程參數,包含旋轉塗佈後的烤乾溫度、烤乾後的退火溫度以及混合氣退火(FGA)的溫度和製程氣壓,高熵氧化物(HEO)薄膜性質得到最佳化。其MOS元件在電容—電壓(C-V)及電流—電壓(I-V)量測中表現出優異的電性,並經計算得出在1 kHz之下擁有約為33的介電常數。透過XPS分析,得知薄膜的表面的組成元素及其價態(Al3+, Ti4+, V4+/V5+, Zr4+, Hf4+, 以及O2-)。HEO薄膜的熱穩定性則藉由 900 °C的5秒快速熱退火處理(RTA)來進行探討。經過RTA的HEO薄膜仍保持近乎非晶質的狀態,並且再經過FGA後表現出改善的C-V特性以及可接受的漏電流值。而HEO製備而成MOSFET元件,展現出1.75 V的閾值電壓、102的開關電流比、149 cm2/Vs的飽和遷移率以及214 mV/dec的亞閾值擺幅。
This study reports the fabrication of high-k high-entropy (Al, Ti, V, Zr, Hf)Ox films through spin-coating and the study of electrical properties and thermal stability of resulting advanced MOS and MOSFET devices. Various annealing conditions were studied, including drying temperature after spin-coating, annealing temperature after drying, and forming gas annealing (FGA) profiles, to optimize the high-entropy oxide (HEO) films. The favorable HEO-film-resulting MOS devices exhibited excellent capacitance-voltage (C-V) and current-voltage (I-V) characteristics; the deduced dielectric constant at 1 kHZ was approximately 33. The valence states of all the constitutive elements (i.e., Al3+, Ti4+, V4+/V5+, Zr4+, Hf4+, and O2-) were determined through XPS. The HEO films were further subjected to rapid thermal annealing (RTA) at 900 °C for 5 s to affirm their thermal stability. The sample after both RTA and FGA exhibited the robust C-V and reasonably low I-V characteristics. The threshold voltage of 1.75 V, on/off ratio of 102, saturated mobility of 149 cm2/Vs, and subthreshold swing of 214 mV/dec was obtained for the resulting MOSFETs.
[1] M.M. Waldrop, The chips are down for Moore’s law, Nature News, 530 (2016) 144-177.
[2] M. Moore, International roadmap for devices and systems, Accessed: Jan, (2020).
[3] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, Advanced gate dielectric materials for sub-100 nm CMOS, Digest. International Electron Devices Meeting, IEEE, (2002) 625-628.
[4] S.N. Supardan, Study of High-k Dielectrics and their Interfaces on Semiconductors for Device Applications, The University of Liverpool (United Kingdom), (2019).
[5] S. Tayal, G. Vibhu, S. Meena, R. Gupta, Optimization of device dimensions of high-k gate dielectric based dg-tfet for improved analog/rf performance, Silicon, 14 (2022) 3515-3521.
[6] C.H. Choi, T. Kim, S. Ueda, Y.-S. Shiah, H. Hosono, J. Kim, J.K. Jeong, High-Performance Indium Gallium Tin Oxide Transistors with an Al2O3 Gate Insulator Deposited by Atomic Layer Deposition at a Low Temperature of 150° C: Roles of Hydrogen and Excess Oxygen in the Al2O3 Dielectric Film, ACS Applied Materials & Interfaces, 13 (2021) 28451-28461.
[7] S. Li, Y. Lin, Y. Wu, X. Li, W. Tian, Ni doping significantly improves dielectric properties of La2O3 films, Journal of Alloys and Compounds, 822 (2020) 153469.
[8] K. Kandpal, N. Gupta, J. Singh, C. Shekhar, On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric, Journal of Electronic Materials, 49 (2020) 3156-3164.
[9] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, J. Peng, Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors, Applied Physics Letters, 112 (2018) 103503.
[10] S.M. Sze, Y. Li, K.K. Ng, Physics of semiconductor devices, John wiley & sons, (2006).
[11] D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill ,(2003).
[12] H. Wong, H. Iwai, On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors, Microelectronic Engineering, 83 (2006) 1867-1904.
[13] J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Reports on Progress in Physics, 69 (2006) 327-396.
[14] J. Lin, J. Cheng, P. Li, W. Chen, H. Huang, Study on SrTiO3 film for the application of power devices, Superlattices and Microstructures, 130 (2019) 168-174.
[15] J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications, Materials Science and Engineering: R: Reports, 88 (2015) 1-41.
[16] J. Robertson, Interfaces and defects of high-K oxides on silicon, Solid-State Electronics, 49 (2005) 283-293.
[17] G. He, L. Zhu, Z. Sun, Q. Wan, L. Zhang, Integrations and challenges of novel high-k gate stacks in advanced CMOS technology, Progress in Materials Science, 56 (2011) 475-572.
[18] M. Houssa, L. Pantisano, L.Å. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions, Materials Science and Engineering: R: Reports, 51 (2006) 37-85.
[19] B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Transactions on Electron Devices, 27 (1980) 606-608.
[20] S. Jiang, G. He, M. Liu, L. Zhu, S. Liang, W. Li, Z. Sun, M. Tian, Interface Modulation and Optimization of Electrical Properties of HfGdO/GaAs Gate Stacks by ALD‐Derived Al2O3 Passivation Layer and Forming Gas Annealing, Advanced Electronic Materials, 4 (2018) 1700543.
[21] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, (2015).
[22] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Entropy-stabilized oxides, Nat Commun, 6 (2015) 8485-8493.
[23] N. Dragoe, D. Bérardan, Order emerging from disorder, Science, 366 (2019) 573-574.
[24] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier (2019).
[25] A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilised perovskite type oxides, Journal of the European Ceramic Society, 38 (2018) 2318-2327.
[26] A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties, Adv Mater, 31 (2019) 1806236.
[27] Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, B. Breitung, High entropy oxides as anode material for Li-ion battery applications: A practical approach, Electrochemistry Communications, 100 (2019) 121-125.
[28] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, High entropy oxides for reversible energy storage, Nat Commun, 9 (2018) 3400-3408.
[29] Y. Dong, K. Ren, Y. Lu, Q. Wang, J. Liu, Y. Wang, High-entropy environmental barrier coating for the ceramic matrix composites, Journal of the European Ceramic Society, 39 (2019) 2574-2579.
[30] J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, High-entropy fluorite oxides, Journal of the European Ceramic Society, 38 (2018) 3578-3584.
[31] C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics, Nature Reviews Materials, 5 (2020) 295-309.
[32] Z. Zhang, S. Yang, X. Hu, H. Xu, H. Peng, M. Liu, B.P. Thapaliya, K. Jie, J. Zhao, J. Liu, H. Chen, Y. Leng, X. Lu, J. Fu, P. Zhang, S. Dai, Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides, Chemistry of Materials, 31 (2019) 5529-5536.
[33] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, Y. Jia, A new class of spinel high-entropy oxides with controllable magnetic properties, Journal of Magnetism and Magnetic Materials, 497 (2020) 165884.
[34] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, physica status solidi (RRL) - Rapid Research Letters, 10 (2016) 328-333.
[35] Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, S. Zhou, Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic, Applied Physics Letters, 115 (2019) 223901.
[36] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides, Ceramics International, 46 (2020) 7430-7437.
[37] Z.-W. Huang, K.-S. Chang, Spin-coating for fabrication of high-entropy high-k (AlTiVZrHf) Ox films on Si for advanced gate stacks, Ceramics International, 47 (2021) 22558-22566.
[38] K.S. Shamala, L.C.S. Murthy, K. Narasimha Rao, Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method, Materials Science and Engineering: B, 106 (2004) 269-274.
[39] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), Journal of Electron Spectroscopy and Related Phenomena, 135 (2004) 167-175.
[40] I. Kim, J. Koo, J. Lee, H. Jeon, A Comparison of Al2O3/HfO2and Al2O3/ZrO2Bilayers Deposited by the Atomic Layer Deposition Method for Potential Gate Dielectric Applications, Japanese Journal of Applied Physics, 45 (2006) 919-925.
[41] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, K. Koumoto, Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution, Journal of Materials Chemistry, 13 (2003) 608-613.
[42] R.B. Fair, Rapid thermal processing: science and technology, Academic Press, (2012).
[43] D. Triyoso, R. Gregory, M. Park, K. Wang, S. Lee, Physical and Electrical Properties of Atomic-Layer-Deposited Hf x Zr1− x O2 with TEMAHf, TEMAZr, and Ozone, Journal of The Electrochemical Society, 155 (2007) H43-H46.
[44] P. Jin, G. He, D. Xiao, J. Gao, M. Liu, J. Lv, Y. Liu, M. Zhang, P. Wang, Z. Sun, Microstructure, optical, electrical properties, and leakage current transport mechanism of sol–gel-processed high- k HfO 2 gate dielectrics, Ceramics International, 42 (2016) 6761-6769.
[45] L. Xifeng, X. Enlong, Z. Jianhua, Low-Temperature Solution-Processed Zirconium Oxide Gate Insulators for Thin-Film Transistors, IEEE Transactions on Electron Devices, 60 (2013) 3413-3416.
[46] A. Kumar, S. Mondal, S.G. Kumar, K.S.R. Koteswara Rao, High performance sol–gel spin-coated titanium dioxide dielectric based MOS structures, Materials Science in Semiconductor Processing, 40 (2015) 77-83.
[47] O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafría, G. Bersuker, Leakage current through the poly-crystalline HfO2: Trap densities at grains and grain boundaries, Journal of Applied Physics, 114 (2013) 134503.