| 研究生: |
雷超宇 Lei, Chao-Yu |
|---|---|
| 論文名稱: |
芳香基/烷基取代咪唑離子液體之合成及其物化性質探討 Synthesis and properties of aryl/alkyl substituted imidazolium ionic liquids |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 離子液體 、電位窗 、導電度 |
| 外文關鍵詞: | ionic liquid, TAAILs, electrochemical window, conductivity |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2009年Thomas Strassner將芳香族引進咪唑型離子液體,發展出可調控且具有芳香族及烷鏈的離子液體(Tunable Aryl Alkyl Ionic Liquids,簡稱TAAILs),藉由改變不同的拉、推電子基發現到TAAILs展現了與一般咪唑離子液體不一樣的物化性質,造成其原因為TAAILs分子內部具有誘導、立體以及中介效應,此類TAAILs可以用在許多應用,如能量儲存裝置、催化還有感應器上。而在本研究中,超過30種的TAAILs合成出來,更進一步探討在不同拉、推電子基時,其結構、熔點、熱裂解溫度、電位窗以及導電度的影響。其中發現到有些化合物熔點低於 -40 oC,在未來可望當作電池中的電解液。
Tunable aryl alkyl ionic liquids (TAAILs) refer to the ionic liquids containing aryl and alkyl substituent on the imidazolium cation. By introducing various electron withdrawing or donating substituents to the imidazolium ring and the aryl ring, the resulting TAAILs exhibit very different properties in comparison with the conventional imidazolium ionic liquids due to the introduced inductive, steric and mesomeric effects to the physical properties. These TAAILs can be tuned for various application purposes including energy storage devices, catalysis, and sensors. In this study, more than thirty TAAILs were synthesized and characterized in terms of their structures, melting point, decomposition point, electrochemical window and conductivity. The effects of the electron withdrawing/donating substituent were discussed. Some of these TAAILs show melting point lower than -40 oC, suggesting that they could be the candidate electrolyte for new batteries.
1. N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev, 2008,
37, 123-150.
2. W. P. Bull, Acad. Imper. Sci, 1914, 1, 1800.
3. F. H. Hurley, T. P. Weir, J. Electrochem. Soc, 1951,
98, 207.
4. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C.
Nardi, C. L. Hussey, J. Electrochem. Soc, 1979, 126,
1644.
5. J. Robinson, R. A. Osteryoung, J. Am. Chem. Soc, 1979,
101, 323.
6. J. S. Wilkes, Green Chem, 2002, 4, 73-80.
7. J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem.
Comm, 1992, 965-967.
8. M. Y. Fujita, A. Narita, H. Ohno, Electrochemical
Aspects of Ionic Liquids, 2011, 21, 301-316.
9. S. Kaya, C. Kaya, N. Islam, Physica B, 2016, 485, 60-
66.
10. A. G. Souza, A. S. Melo, L. C. Santos, J. P.
EspõÂnola, S. F. Oliveira, C. Airoldi, Thermochimica
Acta, 1998, 313, 175-180.
11. W. Zheng, A. Mohammed, L. G. Hines, Jr., D. Xiao, O.
J. Martinez, R. A. Bartsch, S. L. Simon, O. Russina,
A. Triolo, E. L. Quitevis, J. Phys, Chem, B, 2011,
115, 6572-6584.
12. A. Marciniak, J. Mol. Sci, 2010, 11, 1973-1990.
13. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys.
Chem. Ref. Data, 2006, 35-4, 1475-1517.
14. K. Noack, P. Schulz, N. Paape, J. Kiefer, P.
Wasserscheid, A. Leipertz, Phys. Chem. Chem. Phys,
2010, 12, 14153-14161.
15. P. Bonhote, A. Dias, N. Papageorgiou, K.
Kalyanasundaram, M. Gra1tzel, Inorg. Chem, 1996, 35,
1168-1178.
16. P. Hapiot, C. Lagrost, Chem. Review, 2008, 108, 2238.
17. P. Wasserscheid, W. Kevin, Angew. Chem. Int. Ed,
2000, 39, 3772.
18. S. V. Dzyuba, R. A. Bartsch, Chem. Phys. Chem, 2002,
3, 161-166.
19. R. Taniki, K. Matsumoto, R. Hagiwara, Electrochem.
Solid-State Letters, 2012, 15, F13.
20. M. Galinski, A. Lewandowski, I. Stepniak,
Electrochim. Acta, 2006, 51, 5567-5580.
21. B. D. Fitchett, T. N. Knepp, J. C. Conboy, J.
Electrochem. Soc, 2004, 151, E219.
22. H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, M.
Watanabe, Phys. Chem. B, 2005, 109, 6103-6110.
23. D. MacFarlane, J. Sun, J. Golding, P. Meakin, M.
Forsyth, Electrochim. Acta, 2000, 45, 1271-1278.
24. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M.
Forsyth, Phys Chem B, 1999, 103, 4164-4170.
25. A. Lewandowski, A. Swiderska-Mocek, J. Power Sources,
2009, 194, 601-609.
26. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A.
E. Visser, R. D. Rogers, Chem. Commun, 1998, 16,
1765-1766.
27. E. G. Yanes, S. R. Gratz, Anal. Chem, 2001, 73, 3838-
3840.
28. C. Cagliero, C. Bicchi, C. Cordero, E. Liberto, B.
Sgorbini, P. Rubiolo, J. Chromatog. A, 2012, 1268,
130-138.
29. M. Gorlov, L. Kloo, Dalton Trans, 2008, 20, 2655-
2666.
30. D. Wei, A. Ivaska, Analytica Chimica Acta, 2008, 607,
126-135.
31. V. Kumar, S. V. Malhotra, Bioorg. Med. Chem. Letters,
2009, 19, 4643-4646.
32. C. Roosen, P. Muller, L. Greiner, Appl Microbiol
Biotechnol, 2008, 81, 607-614.
33. D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M.
Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis,
Jr., M. Watanabe, P. Simonf, C. A. Angell, Energy
Environ. Sci, 2014, 7, 232-250.
34. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew.
Chem. Int. Ed, 2004, 43, 4988-4992.
35. H. Liu, Y. Liu, J. Li, Phys. Chem. Chem. Phys, 2010,
12, 1685-1697.
36. M. Lipsztajn, R. A. Osteryoung, Inorg. Chem, 1985,
24, 716.
37. A. P. Abbott, F. Qiu, H. M. A. Abood, M. R. Ali, K.
S. Ryder, Phys. Chem. Chem. Phys, 2010, 12, 1862.
38. L. H. M. Huízar, C. H. R. Reyes, M. G. G. Villegas,
J. Mex. Chem. Soc, 2009, 53, 243-247.
39. C. T. J. Low, F. C. Walsh, Surface & Coatings
Technology, 2008, 202, 1339-1349.
40. R. Bertazzoli, M. D. F. B. Sousa, J. Braz, Chem, Soc,
1997, 4, 357-362.
41. P. Giridhar, S. Z. E. Abedin, F. Endres, J. Solid
State Electrochem, 2012, 16, 3487-3497.
42. B. E. Conway, Electrochemical Supercapacitors :
Scientific Fundamentals and Technological
Applications, 1999, 1-8.
43. M. Anouti, E. Couadou, L. Timperman, H. Galiano,
Electrochimica Acta, 2012, 64, 110–117.
44. N. Papageorgiou, Y. Athanassov, M. Armand, P.
Bonhote, H. Pettersson, M. J. Gratzel, J.
Electrochem. Soc, 1996, 143, 3099.
45. P. Wang, S. M. Zakeeruddin, J. Am. Chem. Soc, 2003,
125, 1166-1167.
46. I. W. Sun, H. P. Wang, H. Teng, S. G. Su, Y. C. Lin,
C. W. Kuo, P. R. Chen, T. Y. Wu, Int. J. Electrochem.
Sci, 2012, 7, 9748-9764.
47. J. Q. Xu, J. Yang, Y. N. Nuli, W. B. Zhang, Acta
Chimica Sinica, 2005, 63, 1733-1738.
48. M. Nadherna, J. Reiter, J. Moskon, R. Domino, J.
Power Sources, 2011, 196, 7700-7706.
49. P. H. J. Kouwer, T. M. Swager, J. Am. Chem. Soc,
2007, 129, 14042-14052.
50. S. Ahrens, A. Peritz, T. Strassner, Angewandte
Chemie, 2009, 48, 7908-7910.
51. L. Shi, N. Li, L. Zheng, J. Phys. Chem. C, 2011, 115,
18295-18301.
52. D. Meyer, T. Strassner, J. Org. Chem, 2011, 76, 305-
308.
53. T. Schulz, S. Ahrens, D. Meyer, C. Allolio, A.
Peritz, T. Strassner, Chem. Asian J, 2011, 6, 863-
867.
54. S. Stolte, T. Schulz, C. W. Cho, J. Arning, T.
Strassner, ACS Sustainable Chem. Eng, 2013, 1, 410-
418.
55. N. Gathergood, P. J. Scammells, M. T. Garcia, Green
Chem, 2006, 8, 156-160.
56. R. S. Boethling, E. Sommer, D. DiFiore, Chem. Rev,
2007, 107, 2207-2227.
57. T. Schulz, T. Strassner, J. Organomet. Chem, 2013,
744, 113-118.
58. I. J. B. Lin, C. S. Vasam, J. Organomet. Chem, 2005,
690, 3498-3512.
59. T. M. Anderson, D. Ingersoll, A. J. Rose, C. L.
Staiger, H. D. Pratt III, Dalton Trans, 2011, 40,
11396.
60. J. C. Chang, W. Y. Ho, I. W. Sun, Y. L. Tung, M. C.
Tsui, T. Y. Wu, S. S. Liang, Tetrahedron, 2010, 66,
6150-6155.
61. J. L. Anderson, R. Ding, A. Ellern, D. W. Armstrong,
J. Am. Chem. Soc, 2005, 127, 593-604.
62. A. J. Bard, L. R. Faulkner, Electrochemical Methods:
Fundamentals and Applications, 2001, 227.
63. Z. L. Xu, H. X. Li, Z. G. Ren, W. Y. Du, W. C. Xu, J.
P. Lang, Tetrahedron, 2011, 67, 5282-5288.
64. B. Baek, S. Lee, C. Jung, Int. J. Electrochem. Sci,
2011, 6, 6220-6234.
65. K. Kim, Y. H. Cho, H. C. Shin, J. Power Sources,
2013, 225, 113-118.
66. G. B. Appetecchi, G. T. Kim, M. Montanino, F.
Alessandrini, S. Passerini, J. Power Sources, 2011,
196, 6703-6709.
校內:2021-08-20公開