簡易檢索 / 詳目顯示

研究生: 雷超宇
Lei, Chao-Yu
論文名稱: 芳香基/烷基取代咪唑離子液體之合成及其物化性質探討
Synthesis and properties of aryl/alkyl substituted imidazolium ionic liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 207
中文關鍵詞: 離子液體電位窗導電度
外文關鍵詞: ionic liquid, TAAILs, electrochemical window, conductivity
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2009年Thomas Strassner將芳香族引進咪唑型離子液體,發展出可調控且具有芳香族及烷鏈的離子液體(Tunable Aryl Alkyl Ionic Liquids,簡稱TAAILs),藉由改變不同的拉、推電子基發現到TAAILs展現了與一般咪唑離子液體不一樣的物化性質,造成其原因為TAAILs分子內部具有誘導、立體以及中介效應,此類TAAILs可以用在許多應用,如能量儲存裝置、催化還有感應器上。而在本研究中,超過30種的TAAILs合成出來,更進一步探討在不同拉、推電子基時,其結構、熔點、熱裂解溫度、電位窗以及導電度的影響。其中發現到有些化合物熔點低於 -40 oC,在未來可望當作電池中的電解液。

    Tunable aryl alkyl ionic liquids (TAAILs) refer to the ionic liquids containing aryl and alkyl substituent on the imidazolium cation. By introducing various electron withdrawing or donating substituents to the imidazolium ring and the aryl ring, the resulting TAAILs exhibit very different properties in comparison with the conventional imidazolium ionic liquids due to the introduced inductive, steric and mesomeric effects to the physical properties. These TAAILs can be tuned for various application purposes including energy storage devices, catalysis, and sensors. In this study, more than thirty TAAILs were synthesized and characterized in terms of their structures, melting point, decomposition point, electrochemical window and conductivity. The effects of the electron withdrawing/donating substituent were discussed. Some of these TAAILs show melting point lower than -40 oC, suggesting that they could be the candidate electrolyte for new batteries.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 離子液體 1 1-1-1 離子液體介紹 1 1-1-2 離子液體在電化學中性質探討與應用 11 1-1-2-1 離子液體在超級電容器的應用 12 1-1-2-2 離子液體在太陽能電池的應用 13 1-1-2-3 離子液體在鋰離子電池的應用 15 1-2 TAAILs型離子液體 18 1-2-1 TAAILs型離子液體 18 1-2-2 TAAILs型離子液體的應用 22 1-3 研究動機與目的 23 第二章 實驗相關資料 24 2-1 實驗藥品種類 24 2-2 實驗原理與方法 25 2-2-1 電化學基本原理 25 2-2-2 二極式循環伏安法( Cyclic Voltammetry, CV) 26 2-2-3 電化學阻抗圖譜(Electrochemical Impedance Spectroscopy, EIS) 28 2-3 實驗儀器及裝置 31 2-4 合成步驟 35 第三章 結果與討論 60 3-1 離子液體 60 3-1-1 合成 60 3-1-2 結構鑑定 63 3-1-3 性質探討 66 第四章 結論 89 參考文獻 90 附錄 95 Extended Abstract 202

    1. N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev, 2008,
    37, 123-150.
    2. W. P. Bull, Acad. Imper. Sci, 1914, 1, 1800.
    3. F. H. Hurley, T. P. Weir, J. Electrochem. Soc, 1951,
    98, 207.
    4. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C.
    Nardi, C. L. Hussey, J. Electrochem. Soc, 1979, 126,
    1644.
    5. J. Robinson, R. A. Osteryoung, J. Am. Chem. Soc, 1979,
    101, 323.
    6. J. S. Wilkes, Green Chem, 2002, 4, 73-80.
    7. J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem.
    Comm, 1992, 965-967.
    8. M. Y. Fujita, A. Narita, H. Ohno, Electrochemical
    Aspects of Ionic Liquids, 2011, 21, 301-316.
    9. S. Kaya, C. Kaya, N. Islam, Physica B, 2016, 485, 60-
    66.
    10. A. G. Souza, A. S. Melo, L. C. Santos, J. P.
    EspõÂnola, S. F. Oliveira, C. Airoldi, Thermochimica
    Acta, 1998, 313, 175-180.
    11. W. Zheng, A. Mohammed, L. G. Hines, Jr., D. Xiao, O.
    J. Martinez, R. A. Bartsch, S. L. Simon, O. Russina,
    A. Triolo, E. L. Quitevis, J. Phys, Chem, B, 2011,
    115, 6572-6584.
    12. A. Marciniak, J. Mol. Sci, 2010, 11, 1973-1990.
    13. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys.
    Chem. Ref. Data, 2006, 35-4, 1475-1517.
    14. K. Noack, P. Schulz, N. Paape, J. Kiefer, P.
    Wasserscheid, A. Leipertz, Phys. Chem. Chem. Phys,
    2010, 12, 14153-14161.
    15. P. Bonhote, A. Dias, N. Papageorgiou, K.
    Kalyanasundaram, M. Gra1tzel, Inorg. Chem, 1996, 35,
    1168-1178.
    16. P. Hapiot, C. Lagrost, Chem. Review, 2008, 108, 2238.
    17. P. Wasserscheid, W. Kevin, Angew. Chem. Int. Ed,
    2000, 39, 3772.
    18. S. V. Dzyuba, R. A. Bartsch, Chem. Phys. Chem, 2002,
    3, 161-166.
    19. R. Taniki, K. Matsumoto, R. Hagiwara, Electrochem.
    Solid-State Letters, 2012, 15, F13.
    20. M. Galinski, A. Lewandowski, I. Stepniak,
    Electrochim. Acta, 2006, 51, 5567-5580.
    21. B. D. Fitchett, T. N. Knepp, J. C. Conboy, J.
    Electrochem. Soc, 2004, 151, E219.
    22. H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, M.
    Watanabe, Phys. Chem. B, 2005, 109, 6103-6110.
    23. D. MacFarlane, J. Sun, J. Golding, P. Meakin, M.
    Forsyth, Electrochim. Acta, 2000, 45, 1271-1278.
    24. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M.
    Forsyth, Phys Chem B, 1999, 103, 4164-4170.
    25. A. Lewandowski, A. Swiderska-Mocek, J. Power Sources,
    2009, 194, 601-609.
    26. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A.
    E. Visser, R. D. Rogers, Chem. Commun, 1998, 16,
    1765-1766.
    27. E. G. Yanes, S. R. Gratz, Anal. Chem, 2001, 73, 3838-
    3840.
    28. C. Cagliero, C. Bicchi, C. Cordero, E. Liberto, B.
    Sgorbini, P. Rubiolo, J. Chromatog. A, 2012, 1268,
    130-138.
    29. M. Gorlov, L. Kloo, Dalton Trans, 2008, 20, 2655-
    2666.
    30. D. Wei, A. Ivaska, Analytica Chimica Acta, 2008, 607,
    126-135.
    31. V. Kumar, S. V. Malhotra, Bioorg. Med. Chem. Letters,
    2009, 19, 4643-4646.
    32. C. Roosen, P. Muller, L. Greiner, Appl Microbiol
    Biotechnol, 2008, 81, 607-614.
    33. D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M.
    Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis,
    Jr., M. Watanabe, P. Simonf, C. A. Angell, Energy
    Environ. Sci, 2014, 7, 232-250.
    34. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew.
    Chem. Int. Ed, 2004, 43, 4988-4992.
    35. H. Liu, Y. Liu, J. Li, Phys. Chem. Chem. Phys, 2010,
    12, 1685-1697.
    36. M. Lipsztajn, R. A. Osteryoung, Inorg. Chem, 1985,
    24, 716.
    37. A. P. Abbott, F. Qiu, H. M. A. Abood, M. R. Ali, K.
    S. Ryder, Phys. Chem. Chem. Phys, 2010, 12, 1862.
    38. L. H. M. Huízar, C. H. R. Reyes, M. G. G. Villegas,
    J. Mex. Chem. Soc, 2009, 53, 243-247.
    39. C. T. J. Low, F. C. Walsh, Surface & Coatings
    Technology, 2008, 202, 1339-1349.
    40. R. Bertazzoli, M. D. F. B. Sousa, J. Braz, Chem, Soc,
    1997, 4, 357-362.
    41. P. Giridhar, S. Z. E. Abedin, F. Endres, J. Solid
    State Electrochem, 2012, 16, 3487-3497.
    42. B. E. Conway, Electrochemical Supercapacitors :
    Scientific Fundamentals and Technological
    Applications, 1999, 1-8.
    43. M. Anouti, E. Couadou, L. Timperman, H. Galiano,
    Electrochimica Acta, 2012, 64, 110–117.
    44. N. Papageorgiou, Y. Athanassov, M. Armand, P.
    Bonhote, H. Pettersson, M. J. Gratzel, J.
    Electrochem. Soc, 1996, 143, 3099.
    45. P. Wang, S. M. Zakeeruddin, J. Am. Chem. Soc, 2003,
    125, 1166-1167.
    46. I. W. Sun, H. P. Wang, H. Teng, S. G. Su, Y. C. Lin,
    C. W. Kuo, P. R. Chen, T. Y. Wu, Int. J. Electrochem.
    Sci, 2012, 7, 9748-9764.
    47. J. Q. Xu, J. Yang, Y. N. Nuli, W. B. Zhang, Acta
    Chimica Sinica, 2005, 63, 1733-1738.
    48. M. Nadherna, J. Reiter, J. Moskon, R. Domino, J.
    Power Sources, 2011, 196, 7700-7706.
    49. P. H. J. Kouwer, T. M. Swager, J. Am. Chem. Soc,
    2007, 129, 14042-14052.
    50. S. Ahrens, A. Peritz, T. Strassner, Angewandte
    Chemie, 2009, 48, 7908-7910.
    51. L. Shi, N. Li, L. Zheng, J. Phys. Chem. C, 2011, 115,
    18295-18301.
    52. D. Meyer, T. Strassner, J. Org. Chem, 2011, 76, 305-
    308.
    53. T. Schulz, S. Ahrens, D. Meyer, C. Allolio, A.
    Peritz, T. Strassner, Chem. Asian J, 2011, 6, 863-
    867.
    54. S. Stolte, T. Schulz, C. W. Cho, J. Arning, T.
    Strassner, ACS Sustainable Chem. Eng, 2013, 1, 410-
    418.
    55. N. Gathergood, P. J. Scammells, M. T. Garcia, Green
    Chem, 2006, 8, 156-160.
    56. R. S. Boethling, E. Sommer, D. DiFiore, Chem. Rev,
    2007, 107, 2207-2227.
    57. T. Schulz, T. Strassner, J. Organomet. Chem, 2013,
    744, 113-118.
    58. I. J. B. Lin, C. S. Vasam, J. Organomet. Chem, 2005,
    690, 3498-3512.
    59. T. M. Anderson, D. Ingersoll, A. J. Rose, C. L.
    Staiger, H. D. Pratt III, Dalton Trans, 2011, 40,
    11396.
    60. J. C. Chang, W. Y. Ho, I. W. Sun, Y. L. Tung, M. C.
    Tsui, T. Y. Wu, S. S. Liang, Tetrahedron, 2010, 66,
    6150-6155.
    61. J. L. Anderson, R. Ding, A. Ellern, D. W. Armstrong,
    J. Am. Chem. Soc, 2005, 127, 593-604.
    62. A. J. Bard, L. R. Faulkner, Electrochemical Methods:
    Fundamentals and Applications, 2001, 227.
    63. Z. L. Xu, H. X. Li, Z. G. Ren, W. Y. Du, W. C. Xu, J.
    P. Lang, Tetrahedron, 2011, 67, 5282-5288.
    64. B. Baek, S. Lee, C. Jung, Int. J. Electrochem. Sci,
    2011, 6, 6220-6234.
    65. K. Kim, Y. H. Cho, H. C. Shin, J. Power Sources,
    2013, 225, 113-118.
    66. G. B. Appetecchi, G. T. Kim, M. Montanino, F.
    Alessandrini, S. Passerini, J. Power Sources, 2011,
    196, 6703-6709.

    無法下載圖示 校內:2021-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE