| 研究生: |
嚴介廷 Yan, Jieh-Ting |
|---|---|
| 論文名稱: |
自由液面流場之程式研發 Numerical Method for Free-Surface Flow |
| 指導教授: |
林三益
lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 斜率修正法 、人工壓縮因子 、體積佔有率 、自由液面 、有限體積法 |
| 外文關鍵詞: | Artificial Compressibility, Volume of Fluid, Free-Surface, Finite-Volume method, slope modification method |
| 相關次數: | 點閱:81 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之目的在於以數值方法來模擬多元流體下之自由液面流場,並研究不同參數選擇對多元流體下之自由液面流場之影響。數值方法以三階向風有限體積法計算不可壓縮奈威-斯托克方程式(Navier-Stokes Equations)。並利用每個單位體績之體積佔有率來描述多元流體之佔有率。由於自由液面之界面類似震波之鋒面;而本文採用斜率修正法,能精確的捕捉自由液面之界面。並計算多元流體內鋼體運動之速度,以模擬鋼體運動之流場
在物理問題方面,我們選取了幾個簡單的例子:二維水壩潰堤問題、二維水滴掉落問題、阿基米得自由落體模型、和二維鋼體運動問題等。首先先驗證在本文中數值方法的準確性,再來改變雷諾數以分析與討論流場上的變化進而得到雷諾數對多元流體下之自由液面流場之影響。
A numerical method is developed to simulate the free-surface flows and is used to investigate the effects of different parameters, such as Reynolds number and density ratio. The numerical method is uses a third-order upwind finite-volume method to solve the steady Navier-Stoke equations. The artificial compressibility method is applied in the continuity equations and different kinds of fluid sate described by using the ratio volume of fluid occupied in an unit volume. Because the interface of free surface alikes the front of a shock wave; the slope modification method is used to exactly capture the interface of free surface. Also, the formulas of the speed of rigid body motion is derived to simulate the flow field of rigid body motion.
Several problems are chosen: two dimensional broken dam problem, two dimensional fall droplet, Archimedes’ model, and two dimensional rigid body motion. In the broken dam problem, the effect of Reynolds number is investigated. In the Archimedes’ model, the accuracy of the formulas of the speed of rigid body motion is analyzed.
1. C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225, 1981.
2. S. Osher and J. A. Sethian, “Fronts Propagation with Curvature Dependent Speed Algorithm Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, Vol. 79, pp. 12-49, 1988.
3. S. L. Lee and S. R. Sheu, “A New Numerical Formulation for Incompressible Viscous free Surface Flow Without Smearing the Free Surface,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1837-1848, 2001.
4. T. Yabe, F. Xiao and T. Utsumi, “The Constrained Interpolation Profile Method for Multiphase Analysis,“ Journal of Computational Physics, Vol. 169, pp. 556-593, 2001.
5. D. Pan, Y. S. Yang and C. H. Chang, “Computation of Internal Flow with Free Surfaces Using Artificial Compressibility,” Numerical Heat Transfer, Part B, Vol. 33, pp. 119-134, 1998.
6. F. J. Kelecy and R. H. Pletcher, “The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flow in Closed Containers,” Journal of Computational Physics, Vol. 138, pp. 939-980, 1997
7. Yang, H., “An Artificial Compression Method for ENO Schemes: The Slope Modification Method,” J. of Computational Physics, Vol. 89, pp. 125-160, 1990.
8. 張智豪, “發展多元流體液面捕捉法以計算不可壓縮具自由液面流場,” 成功大學航空太空研究所博士論文, 1998.
9. J. C. Martin and W. J. Moyce, “An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,” Philosophical Transactions of Royal Society of London, Ser. A, Vol. 244, pp. 312-324, 1952.
10. Feng-XIAO, “Numerical Schemes for Advection Equation and Multi-layered Fluid Dynamics,” Submitted to Tokyo Institute of Technology, 1996.
11. Hirsh, R. S., “Higher Order Accurate Difference Solutions of Fluid Mechanics Problems by a Compact Differencing Technique.” Journal of Computational Physics, Vol. 19, pp. 90-109, 1975.
12. John C. Tannehill, & Dale A. Anderson, & Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, 2nd edition, 1997.
13. Alexandre Joel Chorin, “A Numerical Method for Solving Incompressible Viscous Flow Problems.” Journal of Computational Physics, Vol. 2, pp. 12-26, 1967.
14. D. Pan, and S. Chakravarthy, “Unified Formulation for Incompressible Flows,” AIAA Paper 89-0122, 1989.
15. 余重信, “有限體積法模擬不可壓縮之內外流場,” 成功大學航空太空研究所博士論文, 2002.
16. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” Ournal of Computational Physics Vol. 100, pp335-354, 1992.
17. 吳村木, “以有限體積法探討流經圓柱渦漩曳放的壓抑現象,” 成功大學航空太空研究所博士論文, 1993.