簡易檢索 / 詳目顯示

研究生: 劉禹輝
Liu, Yu-Hui
論文名稱: 電泳沉積氧化鋅鍍層其及性質
ZnO coatings fabricated by electrophoretic deposition and its properties.
指導教授: 洪敏雄
Hong, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鋅電泳
外文關鍵詞: electrophoretic deposition, zinc oxide
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氧化鋅變阻 器具有優越的電流-電壓非歐姆特性(non-ohmic characteristics)和突波吸收能力,因此被廣泛應用在電子和固態電子元牛上,作為穩壓及吸收突波的保護裝置。
      本研究利用電泳沉積法製備氧化鋅薄膜,並藉由硝酸鉍電解質之添加進行金屬鉍共鍍。探討電泳參數對於鍍層成長特性、化學組成、微結構之影響,以SEM、EDS、XRD分析鍍層的表面形態、元素組成分佈及相變化,量測I-V曲線,探討變阻特性。
      研究結果顯示在電泳沉積氧化鋅時,伴隨著鉍離子電化學還原,在陰極基板析出鉍金屬。鍍層之厚度、鉍金屬含量及鍍層的表面形態,可利用改變電泳製程參數而獲得控制。其中鉍離子部份吸附在氧化鋅顆粒表面共沉積,鉍金屬在燒結中氧化成氧化鉍,藉由此種形態,將導致燒結時形成氧化鋅晶粒被氧化鉍包覆的效果,達到適合做為氧化鋅變阻器之微結構。
      而本研究首次嘗試以電泳沉積氧化鋅共鍍鉍金屬,作為製備氧化鋅變阻器之製程,相較於傳統製程可獲得更適於做為氧化鋅變阻器之
    微結構特徵,α值為評估變阻特性之指標,實驗量測之α值在燒結溫度900℃約為10,接近目前以氧化鋅-氧化鉍作為變阻器材料所得範圍(5~10)之最大值。

      In this study, the ZnO coatings co-deposited with metallic Bi coming from electrolyte were fabricated by electrophoretic deposition (EPD). The effect of electrophoretic parameters on the deposit characteristics, such as deposition kinetics, the composition of coatings and microstructure were evaluated by SEM, EDS and XRD. Besides, the measurement of I-V curve has also been conducted to determine the non-ohmic characteristics of the varistor fabricated.
      Experimental results show that the electrophoretic deposition of ZnO particles accompanies the reduction of bismuth ion in the form of bismuth metal onto the cathode substrate at appropriate conditions. The thickness, composition and morphology of the deposited layers can be well controlled by proper selection of deposition parameters. Bismuth metal dispersed homogeneously within ZnO coatings as a result of cathodic reduction of ions from those adsorbed on the surface of ZnO particle. During the liquid phase sintering process, ZnO grains are separated by bismuth oxide layer derived from oxidization of bismuth metal and make it suitable for ZnO varistor.
    In this work, for the first time, ZnO varistor is fabricated by combining the EPD of ZnO nanoparticles and the co-deposition of a specific additive from the electrolyte. As verified from the result, the microstructure and composition suitable for ZnO varistor is obtained. By using this process, the α value is about 10 for ZnO sintered at 900℃ for 2 h, which approaches the maximum value for the ZnO-Bi2O3 binary system reported.

    總目錄 中文摘要Ⅰ 英文摘要Ⅱ 總目錄III 圖目錄VI 第一章緒論1 1-1 氧化鋅1 1-2 變阻器1 1-3 電泳沉積3 1-4 研究動機與目的4 第二章理論基礎與文獻回顧7 2-1 氧化鋅變阻器7 2-1-1 電壓-電流特性7 2-1-2 微結構9 2-2 電化學沉積10 2-2-1 膠體溶液表面荷電原理12 2-2-2 電雙層14 2-2-3 DLVO 理論15 2-2-4 電泳沉積之原理16 2-2-5 電泳沉積動力學17 2-2-6 電泳沉積之優點及應用18 第三章實驗方法與步驟22 3-1 實驗流程22 3-2 實驗步驟23 3-2-1 化學藥品選用23 3-2-2 電泳懸浮液之配製23 3-2-3 基板23 3-2-4 實驗參數24 3-2-5 冷均壓24 3-2-6 燒結24 3-3 性質量測及分析25 3-3-1 電泳之電流-時間曲線25 3-3-2 掃描式電子顯微鏡分析25 3-3-3 能量分散光譜儀25 3-3-4 X 光繞射分析25 3-3-5 I-V 曲線量測26 第四章結果與討論28 4-1 電泳沉積參數對鍍層厚度之探討28 4-1-1 外加電壓對鍍層成長特性之影響28 4-1-2 電解質濃度對成長特性之影響34 4-1-3 懸浮液濃度對成長特性之影響35 4-2 電解質及懸浮液濃度對鍍層成份之影響40 4-3 XRD 分析熱處理對鍍層結構之影響44 4-4 鉍含量對於表面型態之影響48 4-5 冷均壓對初鍍膜型態及燒結之影響52 4-6 燒結後鍍層微結構觀察57 4-7 電性量測67 第五章結論72 參考文獻74 誌謝81

    1. H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting
    transparent thin films,” Published by Institute of Physics
    Publication, 1995, p.17.
    2. J. Koike, K. Shimoe and H. Ieki, "1.5 GHz Low-Loss Surface
    Acoustic Wave Filter Using ZnO/ Sapphire Substrate," Jpn. J.
    Appl. Phys., 32 (1993) 2337.
    3. J. P. Celis, D. Drees, M. Z. Huq, P. Q. Wu and M. De Bonte,
    “Hybrid processes – a versatile technique to match process
    requirements and coating needs”, Surf. Coat. Technol., 113 (1999)
    165.
    4. D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L.Vassilev, "Optical
    and electrical properties of R.F. magnetron sputtered ZnO:Al thin
    films," Mater. Sci. Eng. B, 52 (1998) 59.
    5. S.R. Morrison, " Selectivity in Semiconductor gas sensor ," Sensors
    and Actuators, 12 (1987) 425.
    6. C. J. Frosch, “Improved Silicon Carbide Varistors,” Bell Lab. Rec.,
    32 (1954) 336
    7. H. F. Dienel, “Silicon Carbide Varistors: Properties and
    Construction,” Bell Lab. Rec., 34 (1956) 407.
    8. M. Matsuoka, “Nonohmic Properties of Zinc Oxide Ceramics,” Jpn.
    J. Appl. Phys., 10 (1971) 736.
    9. F. L. Yuan and H. J. Ryu, “Microstructure of varistors prepared with
    zinc oxide nanoparticles coated with Bi2O3,” J. Am. Ceram. Soc., 87
    (2004) 736.
    10. L. M. Levinson and H. R. Philipp, “The physics of metal oxide
    varistors,” J. Appl. Phys., 46 (1975) 1332.
    11. Y. Q. Huang, M.D. Liu, Y.K. Zeng, S. B. Liu, “Progress of study on
    ZnO thin film and its properties,” J. Inorgan. Mater., 16 [3] (2001)
    391.
    12. J. Nishino, S. Ohshio, K. Kamata, “Preparation of zinc oxide films
    by low-pressure chemical vapor deposition method,” Materials
    Research Society Symposium – Proceedings, vol. 363, Chemical
    Vapor Deposition of Refractory Metals and Ceramics III, 1995, p
    219.
    13. Y. Suzuoki, A. Ohki, T. Mizutani, M. Ieda, “Electrical Properties of
    ZnO-Bi2O3 thin-film varistors,” J. Phys. D: Appl. Phys., 20 (1987)
    511.
    14. M. Ieda, Y. Suzuoki, M. Nakagawa, T. Mizutani, “Electrical
    properties of ZnO/Bi2O3 two-layer composites,” IEEE Transactions
    on Electrical Insulation, 25[3] (1990) 599.
    15. Y. Q. Huang, M. Liu, Y. Zeng, C. Li, D. Xia and S. Liu,
    “Preparation and properties of ZnO-based ceramic films for
    low-voltage varistors by novel sol-gel process.” Mater. Sci. Eng. B,
    86 (2001) 232.
    16. Y. Q. Huang, M. D. Liu, S. L. Jiang, Y. K. Zeng, C. R. Li, S. B. Liu
    and D. X. Zhou, “Preparation and electrical properties of ZnO-glass
    ceramic films,” Microelectronic Engineering, 66 (2003) 760.
    17. A. R. Boccaccini and I. Zhitomirsky, “Application of electrophoretic
    and electrolytic deposition techniques in ceramics processing,” Curr.
    Opin. Solid State Mater. Sci., 6[3] (2002) 251.
    18. I. Zhitomirsky, “Electrodeposition of composite
    ceria-polyethylenimine films,” Surf. Eng., 20[1] (2004) 43.
    19. P. Bon, I. Zhitomirsky and J. D. Embury, “Electrochemical
    preparation of Ni and Fe hydroxide/oxide films using
    polyethylenimine,” Surf. Eng, 20[1] (2004) 5.
    20. X. Pang and I. Zhitomirsky, “Fabrication of composite films
    containing zirconia and cationic polyelectrolytes,” Langmuir, 20[7]
    (2004) 2921.
    21. I. Zhitomirsky, “Composite nickel hydroxide - polyelectrolyte films
    prepared by cathodic electrosynthesis,” J. Appl. Electrochem., 34[2]
    (2004) 235.
    22. I. Zhitomirsky and A. Petric, “Electrolytic and electrophoretic
    deposition of CeO2 films,” Mater. Lett., 40[6] (1999) 263.
    23. R. C. David, “Varistor Ceramics,” J. Am. Ceram. Soc., 82[3] (1999)
    485.
    24. F. R. Leite, M. A. L. Nobe, E. Longe, J. Mater. Sci., 31 (1996) 5391.
    25. I. Zhitomirsky “Cathodic electrodeposition of ceramic and
    organoceramic materials. Fundamental aspects,” Advances in
    Colloid and Interface Science, 97 (2002) 279.
    26. 張有義,郭蘭生編著Duncan J. Shaw 原著, “膠體介面化學入
    門(Introduction to colloid and surface chemistry 4/e)”, 高立圖書有
    限公司, 1999, p.209。
    27. H. Helmholtz, Ann. Phys., 7 (1879) 337.
    28. G. Gouy, compt. Rend., 149 (1910) 654.
    29. P. L. Chapman, Philos. Mag., 25 (1913) 475.
    30. O. Z. Stern, Elektrochem., 30 (1924) 508.
    31. L. L. Schramm, “Suspensions: Fundamentals and Applications in
    the Petroleum Industry,” Am. Chem. Soc., Washington, 251 (1996) 3.
    32. M. N. Rahaman, “Science of Colloidal Processing,” in Ceramic
    Processing and Sintering, Ed. by M. N. Rahaman, Marcel Dekker,
    New York, 1995, p.146.
    33. P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD):
    mechanisms, kinetics, and application to ceramics,” J. Am. Ceram.
    Soc., 79 (1996) 1987.
    34. F. F. Reuss, Memoires de la societe imperiale de naturalists de
    moscou, 2 (1809) 327.
    35. Z. Zhang, Y. Huang, and Z. Jiang, “Electrophoretic Deposition
    Forming of SiC-TZP Composites in a Nonaqueous Sol Media,” E.,
    J. Am. Ceram. Soc., 77[7] (1994) 1946.
    36. A. Sussman, and T. J. Ward, “Electrophoretic Deposition of
    Coatings from Glass-Isopropanol Slurries,” RCA Rev., 42 (1985)
    178.
    37. P. Sarkar, X. Huang, and P. S. Nicholson, “Structural Ceramic
    Microlaminates by Electrophoretic Deposition,“ J. Am. Ceram. Soc., 75[10] (1992) 2907.
    38. P. Sarkar, X. Huang, and P. S. Nicholson, “Zirconia/Alumina
    Functionally Gradient Composites by Electrophoretic Deposition
    Techniques,” J. Am. Ceram. Soc., 76[4] (1993) 1055.
    39. C. Y. Chen, S. Y. Chen, and D. M. Liu, “Electrophoretic Deposition
    Forming of Porous Alumina Membranes,” Acta Mater., 47[9] (1999)
    2717.
    40. Y. C. Wang, I. C. Leu, and M. H. Hon, “Kinetics of Electrophoretic
    Deposition for Nanocrystalline Zinc Oxide Coatings,” J. Am.
    Ceram. Soc., 87[1] (2004) 84.
    41. Y. Hirata, A. Nishimoto, and Y. Ishihara. “Forming of Alumina
    Powder by Electrophoretic Deposition,” Nippon Seramikkusu
    Kyokai Gakujutusu Ronbunshi., 99[2] (1991) 108.
    42. A. Degen and M. Kosec, “Effect of pH and impurities on the surface
    charge of zinc oxide in aqueous solution,” J. European Ceram. Soc.,
    20 (2000) 667.
    43. A. Degen, M. Kosec, “Influence of pH and ionic impurities on the
    adsorption of poly(acrylic) dispersant onto a zinc oxide surface,” J.
    Am. Ceram. Soc., 86 (2003) 2001.
    44. G. J. Exarhos, S. K. Sharma, “Influence of processing variables on
    the structure and properties of ZnO films,” Thin Solid Films, 270
    (1995) 27.
    45. X. L. Xu, C. X. Guo, Z. M. Qi. “Annealing effect for surface
    morphology and luminescence of ZnO film on silicon,” Chem. Phys.
    Lett., 364 (2002) 57.
    46. G. M. Safronov, V. N. Batog, T. V. Stepanyuk, and P. M. Fedorov,
    “Equilibrium diagram of the bismuth oxide–zinc oxide system,”
    Russ. J. Inorg. Chem., 16 (1971) 460.
    47. S. Hingorani, D. O. Shah, and M. S. Multani, “Effect of process
    variables on the grain growth and microstructure of ZnO-Bi2O3
    varistors and their nanosize ZnO precursors,” J. Mater. Res., 10
    (1994) 461.
    48. J. Wong, “Sintering and varistor characteristics of ZnO-Bi2O3
    ceramics,” J. Appl. Phys., 51 (1980) 4453.
    49. T. R. N. Kutty, S. Ezhilvalavan, “The effect of aluminosilicate on
    the delayed onset of upturn voltages of zinc oxide varistor
    ceramics,” Mater. Sci. Eng. B, 47 (1997) 101.
    50. M. Matsuoka, T. Masuyama, and Y. Iida, J. Jpn. Soc. Appl. Phys., 39 (1970) 94.

    下載圖示 校內:2006-08-09公開
    校外:2006-08-09公開
    QR CODE