| 研究生: |
江國銘 Chiang, Kuo-Ming |
|---|---|
| 論文名稱: |
由導致遺傳性易感染分枝桿菌突變基因研究丙型干擾素受體的新奇分辨性訊息傳遞 Novel Differential Signal Transduction by IFN-γ Receptor by Disease-causing Mutation of Mendelian Susceptibility to Mycobacterial Diseases (MSMD) |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 遺傳性易感染分枝桿菌疾病 、丙型干擾素接受體1 、丙型干擾素 、菸醯胺腺嘌呤二核苷酸磷酸氧化酶 |
| 外文關鍵詞: | MSMD, IFNGR1, IFN-γ, NADPH oxidase priming effect, oxygen species |
| 相關次數: | 點閱:162 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
孟德爾氏遺傳性分枝桿菌易感染性疾病 (MSMD)是一種病患容易受各種非結核分枝桿菌(包括卡介苗)感染的罕見疾病。該疾病主要是體內丙型干擾素接受體異常,以及其他在介白素-12及丙型干擾素訊息途徑相關基因缺失所造成。丙型干擾素對於清除胞內感染病原體相當重要,其中包含活化菸醯胺腺嘌呤二核苷酸磷酸氧化酶 (NADPH oxidase)產生活性氧分子 (ROS)。我們在孟德爾氏遺傳性分枝桿菌易感染性疾病患者家族中,發現其丙型干擾素接受體1基因在第 818位上缺失四個核甘酸,造成丙型干擾素接受體1位於膜內蛋白質結構缺失,無法正常傳遞受丙型干擾素所調控的JAK-STAT1訊息而引發體染色體顯性遺傳的疾病。我們也發現丙型干擾素接受體突變的白血球喪失對丙型干擾素刺激產生IL-12的反應。然而,以丙型干擾素刺激來自病患的周邊血單核球細胞所引發起NADPH oxidase活化的反應並不受影響。因此我們推測即使缺失丙型干擾素接受體1膜內蛋白質的胜肽區域 (domain),丙型干擾素接受體仍可以藉由丙型干擾素接受體2傳遞訊息。在本研究中,我們利用基因選殖技術將丙型干擾素接受體1基因及缺失膜內蛋白質的丙型干擾素接受體1 基因接入病毒載體並轉入293T細胞中。利用流式細胞儀,我們發現到相較於正常丙型干擾素接受體1,缺失膜內蛋白質的丙型干擾素接受體1會大量聚集在細胞膜上。進一步利用西方墨點法也發現到,在丙型干擾素刺激下,缺失膜內蛋白質的丙型干擾素接受體1 無法傳遞調控STAT1、p38 MAPK、Akt磷酸化途徑,但是仍然會誘導Erk1/2及p47phox磷酸化。此外,我們也發現到以丙型干擾素刺激缺失膜內蛋白質的丙型干擾素接受體1可以經由Erk1/2訊息途徑引發起菸醯胺腺嘌呤二核苷酸磷酸氧化酶的活化。這些結果顯示,在缺失膜內蛋白質的丙型干擾素接受體1中,丙型干擾素仍然可以傳遞訊息並調控細胞功能。
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital disorder with impaired immunity against mycobacterial pathogens. MSMD is caused by genetic defects in the IL-12/23-IFNγ circuit. IFN-γ immunity is important for control of intracellular organisms such as bacillus Calmette-Guérin (BCG) and other non-tuberculosis mycobacterium (NTM). With the immune response against the infection of intracellular organisms, the NADPH oxidase-produced oxygen species (ROS) play an important role. In our previous results, we found 3 MSMD patients from a family with IFNGR1 gene mutation (818del4) which leads to a truncated IFNGR1 lacking the entire cytoplasmic signal-transducing domain. This mutation leads to autosome domain (AD) IFN-γ receptor 1 (IFNGR1) deficiency in gene carriers. IFN-γ-induced IL-12 secretion from peripheral blood mononuclear cells (PBMCs) was deficient in patients with AD IFNGR1 deficiency. However, we found that IFN-γ-induced NADPH oxidase priming effect is normal in patient with AD IFNGR1 deficiency. These results implicated that parallel signals may be initiated by IFN-γ stimulation in both IFNGR1-dependent and IFNGR1-independent manners. In this study we cloned the WT and 818del4 mutant IFNGR1 DNA sequences into lentiviral expression vector and transfected the constructs into human embryonic kidney 293T cells. We detected a high surface expression level of IFNGR1 in 818del4 mutant IFNGR1-transfected cells. In addition, in 818del4 mutant IFNGR1-expressing cells, IFN-γ could not transmit the STAT1, p38 MAPK and Akt signaling, but could induce phosphorylation of Erk1/2 and phosphorylation of p47phox. Moreover, IFN-γ-induced phosphorylation of p47phox was inhibited by ERK1/2 inhibitor. In conclusion, the cytoplasmic truncated IFNGR1 can transmit differential signals for activation of NADPH oxidase after treatment with IFN-γ.
Ago, T., F. Kuribayashi, H. Hiroaki, R. Takeya, T. Ito, D. Kohda and H. Sumimoto (2003). "Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation." Proc Natl Acad Sci U S A 100(8): 4474-4479.
Akdis, M., S. Burgler, R. Crameri, T. Eiwegger, H. Fujita, E. Gomez, S. Klunker, N. Meyer, L. O'Mahony, O. Palomares, C. Rhyner, N. Ouaked, A. Schaffartzik, W. Van De Veen, S. Zeller, M. Zimmermann and C. A. Akdis (2011). "Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases." J Allergy Clin Immunol 127(3): 701-721 e701-770.
Al-Muhsen, S. and J. L. Casanova (2008). "The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases." J Allergy Clin Immunol 122(6): 1043-1051; quiz 1052-1043.
Ambruso, D. R., M. A. Ellison, G. W. Thurman and T. L. Leto (2012). "Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity." Biochim Biophys Acta 1823(2): 306-315.
Ana Carolina Almeida, J. R., Silvana Dalgè severino, and P. e. N. José martins-filho, and Antonio Condino-neto (2005). "The Effect of IFN-γ and TNF-α on the NADPH Oxidase
System of Human Colostrum Macrophages, Blood Monocytes, and THP-1 Cells." Journal of interferon & cytokine research 25.
Bax, H. I., A. F. Freeman, L. Ding, A. P. Hsu, B. Marciano, E. Kristosturyan, T. Jancel, C. Spalding, J. Pechacek, K. N. Olivier, L. A. Barnhart, L. Boris, C. Frein, R. J. Claypool, V. Anderson, C. S. Zerbe, S. M. Holland and E. P. Sampaio (2013). "Interferon alpha treatment of patients with impaired interferon gamma signaling." J Clin Immunol 33(5): 991-1001.
Blahoianu, M. A., A. A. Rahimi, M. Kozlowski, J. B. Angel and A. Kumar (2014). "IFN-gamma-induced IL-27 and IL-27p28 expression are differentially regulated through JNK MAPK and PI3K pathways independent of Jak/STAT in human monocytic cells." Immunobiology 219(1): 1-8.
Blouin, C. M. and C. Lamaze (2013). "Interferon Gamma Receptor: The Beginning of the Journey." Front Immunol 4: 267.
Bot, A., E. Rodrigo, T. Wolfe, S. Bot and M. G. Von Herrath (2003). "Infection-Triggered Regulatory Mechanisms Override the Role of STAT 4 in Control of the Immune Response to Influenza Virus Antigens." Journal of Virology 77(10): 5794-5800.
Brown, G. E., M. Q. Stewart, S. A. Bissonnette, A. E. Elia, E. Wilker and M. B. Yaffe (2004). "Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase." J Biol Chem 279(26): 27059-27068.
Cambi, G. E., G. Lucchese, M. M. Djeokeng, A. Modesti, T. Fiaschi, G. Faggian, G. Sani and P. A. Modesti (2012). "Impaired JAK2-induced activation of STAT3 in failing human myocytes." Mol Biosyst 8(9): 2351-2359.
Chang, Y. J., M. J. Holtzman and C. C. Chen (2002). "Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway." J Biol Chem 277(9): 7118-7126.
Chilakamarti V.Ramana, M. P. G., Robert D.Schreiber and George R. Stark (2002). "Stat1-dependent and -independent pathways in IFN-γ-dependent signaling." TRENDS in Immunology 23(2): 96-101.
Cottle, L. E. (2011). "Mendelian susceptibility to mycobacterial disease." Clin Genet 79(1): 17-22.
Daeron, M. (2014). "Cell biology. Signaling shifts in allergy responses." Science 343(6174): 982-983.
Devasthanam, A. S. (2014). "Mechanisms underlying the inhibition of interferon signaling by viruses." Virulence 5(2): 270-277.
El-Benna, J., P. M. Dang and M. A. Gougerot-Pocidalo (2008). "Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane." Semin Immunopathol 30(3): 279-289.
Erika A. Bach, M. A. a. R. D. S. (1997). "THE IFNγ RECEPTOR: A Paradigm
for Cytokine Receptor Signaling." Annual Reviews Inc 15: 563–591.
Fensterl, V. and G. C. Sen (2009). "Interferons and viral infections." Biofactors 35(1): 14-20.
Filipe-Santos, O., J. Bustamante, A. Chapgier, G. Vogt, L. de Beaucoudrey, J. Feinberg, E. Jouanguy, S. Boisson-Dupuis, C. Fieschi, C. Picard and J. L. Casanova (2006). "Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features." Semin Immunol 18(6): 347-361.
Galal, N., J. Boutros, A. Marsafy, X. F. Kong, J. Feinberg, J. L. Casanova, S. Boisson-Dupuis and J. Bustamante (2012). "Mendelian susceptibility to mycobacterial disease in egyptian children." Mediterr J Hematol Infect Dis 4(1): e2012033.
Gough, D. J., D. E. Levy, R. W. Johnstone and C. J. Clarke (2008). "IFNgamma signaling-does it mean JAK-STAT?" Cytokine Growth Factor Rev 19(5-6): 383-394.
Gough, D. J., K. Sabapathy, E. Y. Ko, H. A. Arthur, R. D. Schreiber, J. A. Trapani, C. J. Clarke and R. W. Johnstone (2007). "A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes." J Biol Chem 282(2): 938-946.
Howard M. Johnson, E. N.-S. a. C. M. A. (2011). "Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifnγ and Other Cytokines: A Possible Steroid-like Connection." Clinical & Cellular Immunology 2(4).
Hu, X. and L. B. Ivashkiv (2009). "Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases." Immunity 31(4): 539-550.
Hu, X., P. K. Paik, J. Chen, A. Yarilina, L. Kockeritz, T. T. Lu, J. R. Woodgett and L. B. Ivashkiv (2006). "IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins." Immunity 24(5): 563-574.
Kakar, R., B. Kautz and E. A. Eklund (2005). "JAK2 is necessary and sufficient for interferon-gamma-induced transcription of the gene encoding gp91PHOX." J Leukoc Biol 77(1): 120-127.
Kong, X. F., G. Vogt, A. Chapgier, C. Lamaze, J. Bustamante, C. Prando, A. Fortin, A. Puel, J. Feinberg, X. X. Zhang, P. Gonnord, U. M. Pihkala-Saarinen, M. Arola, P. Moilanen, L. Abel, M. Korppi, S. Boisson-Dupuis and J. L. Casanova (2010). "A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon." Hum Mol Genet 19(3): 434-444.
Lasfar, A., J. R. Cook, K. A. Cohen Solal, K. Reuhl, S. V. Kotenko, J. Langer and D. L. Laskin (2014). "Critical Role of the Endogenous IFN Ligand-Receptors in Type I and Type II IFNs Response." Immunology.
Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi and M. Locati (2004). "The chemokine system in diverse forms of macrophage activation and polarization." Trends Immunol 25(12): 677-686.
Matsuzawa, T., B. H. Kim, A. R. Shenoy, S. Kamitani, M. Miyake and J. D. Macmicking (2012). "IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway." J Immunol 189(2): 813-818.
Nagarajan, U. M., A. Bushey and J. M. Boss (2002). "Modulation of Gene Expression by the MHC Class II Transactivator." The Journal of Immunology 169(9): 5078-5088.
Nakano, M., C. Saeki, H. Takahashi, S. Homma, H. Tajiri and M. Zeniya (2012). "Activated natural killer T cells producing interferon-gamma elicit promoting activity to murine dendritic cell-based autoimmune hepatic inflammation." Clin Exp Immunol 170(3): 274-282.
Navarro, A. (2003). "A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion." Journal of Leukocyte Biology 73(4): 540-545.
Nguyen, H., C. V. Ramana, J. Bayes and G. R. Stark (2001). "Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression." J Biol Chem 276(36): 33361-33368.
Paola Bernabei, Eliana M. Coccia, Sidney Pestka, Christopher D. Krause, Laura Rigamonti, Angela Battistini, Marita Bosticardo, Guido Forni and a. F. Novelli (2001). "Interferon- receptor 2 expression as the deciding factor in human T, B, and myeloid cell proliferation or death." Journal of Leukocyte Biology 70: 950-960.
Paravicini, T. M. and R. M. Touyz (2008). "NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities." Diabetes Care 31 Suppl 2: S170-180.
Rada, B. and T. L. Leto (2008). "Oxidative innate immune defenses by Nox/Duox family NADPH oxidases." Contrib Microbiol 15: 164-187.
Radina P. Soebiyanto, S. N. S., Cheng-Kui Qu, Kenneth A. Loparo, and Kevin and D. Bunting (2007). "Complex Systems Biology Approach To Understanding
Coordination of JAK-STAT Signaling." Biosystems 90(3): 830–842.
Ramana, C. V., M. P. Gil, Y. Han, R. M. Ransohoff, R. D. Schreiber and G. R. Stark (2001). "Stat1-independent regulation of gene expression in response to IFN-gamma." Proc Natl Acad Sci U S A 98(12): 6674-6679.
Schroder, K., P. J. Hertzog, T. Ravasi and D. A. Hume (2004). "Interferon-gamma: an overview of signals, mechanisms and functions." J Leukoc Biol 75(2): 163-189.
Siraganian, R. (2003). "Mast cell signal transduction from the high-affinity IgE receptor." Current Opinion in Immunology 15(6): 639-646.
Smyth, D., V. Phan, A. Wang and D. M. McKay (2011). "Interferon-gamma-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn." Lab Invest 91(5): 764-777.
Stark, G. R. and J. E. Darnell, Jr. (2012). "The JAK-STAT pathway at twenty." Immunity 36(4): 503-514.
Stone, K. D., C. Prussin and D. D. Metcalfe (2010). "IgE, mast cells, basophils, and eosinophils." J Allergy Clin Immunol 125(2 Suppl 2): S73-80.
Suzuki, R., S. Leach, W. Liu, E. Ralston, J. Scheffel, W. Zhang, C. A. Lowell and J. Rivera (2014). "Molecular editing of cellular responses by the high-affinity receptor for IgE." Science 343(6174): 1021-1025.
Takaoka, A. (2000). "Cross Talk Between Interferon-gamma and -alpha /beta Signaling Components in Caveolar Membrane Domains." Science 288(5475): 2357-2360.
Takeda, K., T. Kawai, Y. Nakazawa, H. Komuro, K. Shoji, K. Morita, T. Katsuta, M. Yamamoto, I. Miyairi, Y. Ohya, A. Ishiguro and M. Onodera (2014). "Augmentation of antitubercular therapy with IFNgamma in a patient with dominant partial IFNgamma receptor 1 deficiency." Clin Immunol 151(1): 25-28.
Tsai, C. C., J. I. Kai, W. C. Huang, C. Y. Wang, Y. Wang, C. L. Chen, Y. T. Fang, Y. S. Lin, R. Anderson, S. H. Chen, C. W. Tsao and C. F. Lin (2009). "Glycogen synthase kinase-3beta facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2." J Immunol 183(2): 856-864.
Vera, J., K. Rateitschak, F. Lange, C. Kossow, O. Wolkenhauer and R. Jaster (2011). "Systems biology of JAK-STAT signalling in human malignancies." Prog Biophys Mol Biol 106(2): 426-434.
Wang, L. H., C. L. Yen, T. C. Chang, C. C. Liu and C. C. Shieh (2012). "Impact of molecular diagnosis on treating Mendelian susceptibility to mycobacterial diseases." J Microbiol Immunol Infect 45(6): 411-417.