簡易檢索 / 詳目顯示

研究生: 趙致平
Chao, Chih-Ping
論文名稱: 基於繼電器測試之分數階系統鑑別與PIλDμ控制器設計
Fractional Order System Identification and PIλDμ Controller Design Based on Relay Tests
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 91
中文關鍵詞: 分數階系統繼電器回饋分數一階時延模型PIλDμ控制器
外文關鍵詞: Fractional order systems, Relay feedback, FFOPTD model, PIλDμ controller
相關次數: 點閱:39下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一些真實的物理系統,如電化學領域等,較適合使用分數階微分方程來建立模型,能夠比整數階微分方程得到更精準的系統描述。此外,分數階建模還有一有用特性,即能以簡單低階模型對高階系統提供良好的描述。分數階系統的應用需要大量運算,近年因為電腦運算速度的快速進步,分數階系統逐漸成為重要的研究主題。
    本論文提出利用繼電器回饋對未知系統進行閉環鑑別,僅需對系統進行一次響應試驗,即可結合輸出入量測和頻率響應原理來獲得系統的分數一階時延模型。在分數階模型已知的情況下,可使用直接合成法進行控制器設計,然而所得的控制器形式相當複雜,不利於實際應用。為解決此問題,本文提出利用最小平方法進行PIλDμ控制器的全域最佳參數求解,可將複雜控制器轉為簡單的PID形式控制器,其中頻率範圍的選取以及頻率權重的調整,對PIλDμ控制器的設計有重要影響。
    最後本論文結合兩者提出自動調諧方法,先利用繼電器回饋鑑別出分數一階時延模型,然後根據模型設計適合的PIλDμ控制器。模擬研究顯示,本自動調諧方法對於各種整數階和分數階系統,皆能鑑別出有效的分數階模型,並且所得之PIλDμ控制器具有良好的控制性能。

    Some real physical systems, such as electrochemistry, are more suitable to use fractional order differential equations to build models, which can obtain more accurate system descriptions than integer order differential equations. In addition, fractional order modeling has a useful feature, that is, it can describe high-order systems well with simple low-order models. The application of fractional order systems requires considerable calculations. In recent years, due to the rapid advancement of computer computing speed, fractional order systems have gradually become an important research topic.
    This thesis proposes the use of relay feedback to identify unknown systems in closed-loop operation. This requires only a single response test on the system, and then the input-output measurements and frequency response theory can be combined to find the fractional first order plus time delay (FFOPTD) model of the system. When the fractional order model is known, the direct synthesis method can be used to design a controller. However, the resulting controller form is quite complicated, which is not feasible in practical applications. To resolve this problem, the thesis proposes to use the least square method to find the globally optimal solution of PIλDμ controller parameters. This can transform the complex controller into a simple controller of PID form. The selection of the frequency range and the adjustment of the frequency weights are important for the design of PIλDμ controller.
    Finally, this thesis combines the two methods to present an auto-tuning method. First, the FFOPTD model is identified using relay feedback, and then a suitable PIλDμ controller is designed based on the identified model. Simulation study shows that the proposed auto-tuning method can effectively identify the fractional order models of various integer order or fractional order systems, and the resulting PIλDμ controller possesses good control performance.

    目錄 摘要 i Abstract ii 誌謝 viii 目錄 ix 表目錄 xii 圖目錄 xiii 符號表 xv 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 章節與組織 3 第二章 分數階系統之原理與計算方法 4 2-1 分數階之微積分定義 4 2-2 分數階之微積分運算 5 2-3 分數階微積分的拉普拉斯轉換 6 2-3-1 分數階積分的拉普拉斯轉換 7 2-3-2 分數階微分的拉普拉斯轉換 7 2-4 分數階系統 8 2-5 分數階系統的頻域分析 9 2-5-1 波德(Bode)圖 10 2-5-2 奈氏(Nyquist)圖 11 2-6 分數階系統穩定性 11 2-7 Oustaloup近似法 13 2-8 分數一階時延(FFOPTD)系統 14 2-9 分數階PID控制器(FOPID): PIλDμ控制器 15 第三章 繼電器系統之極限環研究 17 3-1 描述函數(Describing Function)分析法 17 3-2 基於A Loci近似法極限環求解 19 3-2-1 A Loci近似法 19 3-2-2 極限環求解 21 3-3 描述函數分析法與A Loci法之比較 22 第四章 基於繼電器測試之分數階系統鑑別 24 4-1 繼電器回饋系統 24 4-2 不含時延之鑑別模型推導及參數演算 25 4-2-1 不含時延之鑑別模型推導 25 4-2-2 反三角函數修正 28 4-3 含時延之鑑別模型討論 30 4-4 模擬與結果討論 32 4-4-1 案例一 33 4-4-2 案例二 35 4-4-3 案例三 37 4-4-4 案例四 38 4-4-5 案例五 40 4-4-6 案例六 41 第五章 基於最小平方法之PIλDμ控制器最佳設計求解 43 5-1 直接合成法 43 5-2 基於開環轉移函數之最小平方法推導 45 5-3 與閉環轉移函數之方法比較 50 5-4 模擬參數設定與結果討論 51 5-4-1 案例一 52 5-4-2 案例二 56 5-4-3 案例三 59 5-4-4 案例四 62 5-4-5 案例五 65 5-4-6 案例六 66 5-5 結論 67 第六章 自動調諧應用 69 6-1 案例一 69 6-2 案例二 70 6-3 案例三 72 6-4 案例四 74 6-5 案例五 76 6-6 案例六 78 第七章 結論與未來展望 80 7-1 結論 80 7-2 未來展望 81 參考文獻 82 附錄一 FOMCON toolbox簡介 87 表目錄 表 3-1 不同n值下所求得之極限環頻率 23 表 5-1 各條件下所對應之代號表 52 表 5-2 案例一之FOPID、FOPI參數與ISE 55 表 5-3 案例二之FOPID、FOPI參數與ISE 58 表 5-4 案例三之FOPID、FOPI參數與ISE 61 表 5-5 案例四FOPID、FOPI參數與ISE 64 表 5-6 案例五FOPID、FOPI參數與ISE 65 表 5-7 案例六FOPID、FOPI參數與ISE 66 圖目錄 圖 2-1 系統1/(s^α+1)於α=0.5、0.8、1、1.2、1.5之波德圖 10 圖 2-2 系統1/(s^α+1)於α=0.5、0.8、1、1.2、1.5之奈氏圖 11 圖 2-3 分數階次系統穩定性示意圖 12 圖 2-4 1/(s-2s^0.5+1.25)的奈氏圖 13 圖 2-5 PIλDμ平面 16 圖 3-1 非線性回饋系統 17 圖 3-2 理想繼電器示意圖 19 圖 3-3 遲滯繼電器示意圖 19 圖 4-1 偏置繼電器回饋系統 25 圖 4-2 實際系統與模擬模型所使用引發繼電器的訊號比較 32 圖 4-3 案例一繼電器回饋系統之輸入輸出訊號 33 圖 4-4 案例一中各模型ISE與時延之關係圖 34 圖 4-5 案例一中真實系統與系統鑑別模型之步階響應 35 圖 4-6 案例二中各模型ISE與時延之關係圖 36 圖 4-7 案例二中真實系統與系統鑑別模型之步階響應 36 圖 4-8 案例三中各模型ISE與時延之關係圖 37 圖 4-9 案例三中真實系統與系統鑑別模型之步階響應 38 圖 4-10 案例四中各模型ISE與時延之關係圖 39 圖 4-11 案例四中真實系統與系統鑑別模型之步階響應 39 圖 4-12 案例五中各模型ISE與時延之關係圖 40 圖 4-13 案例五中真實系統與系統鑑別模型之步階響應 41 圖 4-14 案例六中各模型ISE與時延之關係圖 42 圖 4-15 案例六中真實系統與系統鑑別模型之步階響應 42 圖 5-1 控制器GC於Simulink之配置圖 44 圖 5-2 閉環頻率響應方法之FOPID、FOPI與Gc,DS的步階響應 53 圖 5-3 案例一各條件(Ⅰ~Ⅵ)下所得控制器與Gc,DS控制器之步階響應比較 54 圖 5-4 案例二各條件(Ⅰ~Ⅵ)下所得控制器與Gc,DS控制器之步階響應比較 57 圖 5-5 案例三各條件(Ⅰ~Ⅵ)下所得控制器與Gc,DS控制器之步階響應比較 60 圖 5-6 案例四各條件(Ⅰ~Ⅵ)下所得控制器與Gc,DS控制器之步階響應比較 63 圖 5-7 案例五 FOPID、FOPI與Gc,DS步階響應比較 65 圖 5-8 案例六 FOPID、FOPI與Gc,DS步階響應比較 66 圖 5-9 系統1/(s^α+1)於α=0.5、0.75、1、1.25、1.5、1.75、2步階響應 68 圖 6-1 案例一中,FOPID、FOPI與Gc,DS步階響應比較 70 圖 6-2 案例二中,FOPID、FOPI與Gc,DS步階響應比較 71 圖 6-3 案例三真實系統與模型之步階響應比較 73 圖 6-4 案例三中,FOPID、FOPI與Gc,DS步階響應比較 73 圖 6-5 案例四真實系統與模型之步階響應比較 75 圖 6-6 案例四中,FOPID、FOPI與Gc,DS步階響應比較 75 圖 6-7 案例五真實系統與模型之步階響應比較 77 圖 6-8 案例五中,FOPID、FOPI與Gc,DS步階響應比較 77 圖 6-9 案例六真實系統與模型之步階響應比較 79 圖 6-10 案例六中,FOPID、FOPI與Gc,DS步階響應比較 79

    參考文獻
    [1] A. K. Tangirala, Principles of System Identification: Theory and Practice, CRC Press, 2014.
    [2] K. J. Keesman, System Identification: An Introduction, Springer London, 2011.
    [3] L. Euler, "De Progressionibus Transcenti Bus, sev Quorum Termini Algebraic Dari Neuquen," Comment. Acad. Sci. Imperialis Petropolitanae, vol. 5, pp. 36-57, 1738.
    [4] J. Liouville, "Memoire sur quelques Questions de Geometrie et de Mecanique, et sur un nouveau genre de Calcul pour resoudre ces Questions," J. Ecole Polytech, Section 21, pp. 1-69, 1832.
    [5] B. Riemann, "Versuch einer allgemeinen Auffasung der Intergration und Differentiation," The Collected Works of Bernhard Riemann (H. Weber, ed.), 1953.
    [6] H. J. Holmgren, "Om differentialkalkylen med indices of hvad nature sam heist," Kongliga Svenska Vetenskaps-Akademiens Handlinger, vol. 11, no. 5, pp. 1-83, 1864.
    [7] J. L. Lagrange, "Sur une nouvelle espece de calcul relatif a la differentiation et a l'integration des quantites variables," Oeuvres de Lagrange, vol. 3, pp. 411-476, 1879.
    [8] G. S. Blair, "The role of psychophysics in rheology," Journal of Colloid Science, vol. 2, no. 1, pp. 21-32, 1947.
    [9] T. D. Shermergor, "On the use of fractional differentiation operators for the description of elastic-after effect properties of materials," Journal of Applied Mechanics and Technical Physics , vol. 7, pp. 85-87, 1966.
    [10] K. B. Oldham, "New approach to the solution of electrochemical problems involving diffusion," Anal. Chem., vol. 41, no. 13, pp. 1904-1905, 1969.
    [11] Keith B.Oldham, Jerome Spanier, "The replacement of Fick's laws by a formulation involving semidifferentiation," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 26, no. 2-3, pp. 331-341, 1970.
    [12] Morten. Grenness and Keith B. Oldham, "Semiintegral electroanalysis. Theory and verification," Anal. Chem., vol. 44, no. 7, pp. 1121-1129, 1972.
    [13] R. L. Somorjai and David M. Bishop, "Integral-Transformation Trial Functions of the Fractional-Integral Class," Physical Review A, vol. 1, p. 1013, 1970.
    [14] K. B.Oldham, "Diffusive transport to planar, cylindrical and spherical electrodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 41, no. 3, pp. 351-358, 1973.
    [15] Keith B Oldham and Jerome Spanier, "A general solution of the diffusion equation for semiinfinite geometries," Journal of Mathematical Analysis and Applications, vol. 39, no. 3, pp. 655-669, 1972.
    [16] A. Tepljakov, Fractional-order Modeling and Control of Dynamic Systems, Springer Theses, 2017.
    [17] K. Oldham, and J. spanier, The Fractional Calculus, New York, London: Academic Press, 1974.
    [18] M. D. Ortigueira, and F. Coito, "From Differences to Derivatives," Fractional Calculus and Applied Analysis., vol. 7, no. 4, pp. 459-471, 2004.
    [19] Rudolf Scherer, Shyam L. Kalla, Yifa Tang, Jianfei Huang, "The Grünwald–Letnikov method for fractional differential equations," Computers and Mathematics with Applications, vol. 62, no. 3, pp. 902-917, 2011.
    [20] E. Hille and R. S. Phillips, "Functional analysis and semi-groups," American Mathematical Society, vol. 31, 1957.
    [21] M. Riesz, "L'intégrale de Riemann-Liouville et le problème de Cauchy," Acta Mathematica, vol. 81, pp. 1-222, 1949.
    [22] K. S. Miller, and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, 1993.
    [23] M. Caputo, "Linear model of dissipation whose Q is almost frequency independent-Ⅱ," Geophysical Journal International, vol. 13, no. 5, pp. 529-539, 1967.
    [24] D. Matignon, “Generalized fractional differential and difference equations: stability properties and modeling issues,” Proceedings of Mathematical Theory of Networks and Systems Symposium, pp. 503-506, 1998.
    [25] A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, "Frequency-band complex noninteger differentiator: characterization and synthesis," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp. 25-39, 2000.
    [26] I. Podlubny, L. Dorcák, I. Kostial, "On fractional derivatives, fractional-order dynamic systems," Proceedings of 36th IEEE Conference Decision and Control, vol. 5, pp. 4985-4990, 1997.
    [27] I. Podlubny, "Fractional-order systems and PIλDμ-controllers," IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
    [28] Das, S., Gupta, A., Das, S., "Generalized Frequency Domain Robust Tuning of a Family of Fractional Order PI/PID Controllers to Handle Higher Order Process Dynamics," Advanced Materials Research, vol. 403, p. 4859–4866, 2012.
    [29] C. A. Monje, Blas M. Vinagre, YangQuan Chen, Vicente Feliu, "On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties," Nonlinear Dynamics, vol. 38, pp. 369-381, 2004.
    [30] C.A. Monje, B.M. Vinagre, V. Feliu, Y.Q. Chen, "Tuning and auto-tuning of fractional order," Control Eng. Pract., vol. 16, no. 7, pp. 798-812, 2008.
    [31] B. V. A. C. V. F. Y. C. C.A. Monje, "Auto-tuning of fractional lead-lag compensators," Proceedings of the 16th IFAC World Congress, pp. 319-324, 2005.
    [32] Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V., Fractional-order Systems and Controls, Springer, 2010.
    [33] Indranil Pan and Saptarshi Das, Intelligent Fractional Order systems and Control, Springer, 2013.
    [34] D. Atherton, "Early developments in nonlinear control," IEEE Control Syst., vol. 16, pp. 34-43, 1996.
    [35] D. Atherton, An Introduction to Nonlinearity in Control Systems, 2011.
    [36] Y. Z. Tsypkin, Relay Control Systems, 1984.
    [37] Derek P. Atherton, Nusret Tan, Celaleddin Yeroglu, Gürkan Kavuran and Ali Yüce, "Limit Cycles in Nonlinear Systems with Fractional Order Plants," Machines, vol. 2, no. 3, pp. 176-201, 2014.
    [38] Astrom, K. J., & Hagglund, T., "Automatic tuning of simple regulators with specification on phase and amplitude margin," Automatica, vol. 20, p. 645, 1984.
    [39] W. L. Luyben, "Derivation of transfer function model for highly nonlinear distillation column," Industrial Engineering and Chemical Reasearch, vol. 26, p. 2490, 1987.
    [40] Li, W., Eskinat, E., & Luyben, W. L., "An improved auto tune identification method," Industrial Engineering Research and Design, vol. 30, p. 1530, 1991.
    [41] A. Leva, "PID auto tuning algorithm based on relay feedback," IEE Proceedings-CTA, vol. 140, p. 328, 1993.
    [42] C.-C. Yu, Auto tuning of PID controllers: relay feedback, Springer, 1999.
    [43] Shen, S.-H., Wu, J.-S., & Yu, C.-C., "Use of biased relay feedback for system identification," American Institute of Chemical Engineering Journal, vol. 42, p. 1174, 1996.
    [44] E. Kreysizig, Advanced engineering mathematics, New York: Wiley, 1996.
    [45] A. Tepljakov, "Fractional-order Calculus based Identification and Control of Linear Dynamic Systems," 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE