簡易檢索 / 詳目顯示

研究生: 郭佳宜
Kuo, Chia-I
論文名稱: 探討Klf10基因在成體組織的表現模式及產製Klf10基因剔除小鼠
Study the Gene Expression Profile of Klf10 on Adult Tissues and Create Its Knockout Mice
指導教授: 張虹書
Chang, Hung-Shu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 乙型轉型生長因子TGF-β誘導早期基因-1永久性Klf10基因剔除條件性Klf10基因剔除
外文關鍵詞: TGF-β, TIEG1, KLF10, conventional Klf10 knockout, conditional Klf10 knockout
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已知乙型轉型生長因子(transforming growth factor-β,TGF-β)之生物訊息傳遞路徑,係透過Smad蛋白質依賴性(dependent)或非Smad蛋白質依賴性訊息路徑執行其功能,進而引發細胞凋亡(apoptosis)、分化(differentiation)和細胞週期中止(cell cycle arrest)等過程,藉以調控細胞的胞內恆定(homeostasis)及發育(development),而改變此訊息傳遞路徑則會產生嚴重的畸形(malformation)及癌症(cancer)等疾病。目前對於TGF-β/Smad訊息路徑的研究已有相當程度地了解;反之,TGF-β/非Smad蛋白質訊息傳遞路徑則尚待釐清,其中,Krüppel-like Factor 10 (KLF10)已被發現為TGF-β所誘導產生的非Smad蛋白質之一,且因其蛋白質羧基端具有三個與Sp1 (specificity protein 1)轉錄因子高相似度的鋅指(zinc finger)結構,而被歸屬於Sp/KLF家族成員之一,KLF10蛋白質可透過該鋅指結構與DNA上富含GC核苷酸的序列結合;此外,其蛋白質胺基端區域則擁有調節下游基因轉錄的作用。近年來,KLF10蛋白質陸續被發現與細胞凋亡(apoptosis)及癌化過程具相關性,但KLF10蛋白質的詳細生理功能為何仍有待釐清。為此,本論文先行以反轉錄聚合酶鏈鎖反應與西方墨點法建立Klf10的轉錄及轉譯產物在成體正常組織的表現模式,發現KLF10蛋白質大量表現在肝臟、胰臟、睪丸及副睪組織中;此外,亦以基因工程的方式進行永久性及條件性Klf10基因剔除小鼠的製造,現已分別獲得到永久及條件性Klf10基因剔除的小鼠胚胎幹細胞株與嵌合鼠,且歷經長期的配種,永久性及條件性Klf10基因剔除的嵌合鼠已確定可經由性腺傳衍(germline transmition)將剔除載體傳遞給子代,並且累積至今已獲得條件性Klf10基因剔除之同合子(Klf10floxed/floxed)小鼠及永久性Klf10基因剔除之異合子(Klf10+/-)小鼠,爾後將以此等基因剔除小鼠作為研究KLF10蛋白質在各器官中所扮演的生理角色之動物模式,用以釐清Klf10所牽連之細胞訊息傳遞路徑及其蛋白質缺失與疾病發生的關聯。

    The family of transforming growth factor-β (TGF-β) cytokines, along with their corresponding signaling molecules, are master regulators of normal homeostasis and development. Consequently, alterations in these pathways lead to severe malformations and diseases, including cancer. Recent studies reveal the existence of two types of membrane-to-nucleus TGF-β signaling mechanisms, namely the Smad-dependent and non-Smad protein mediated cascades. However, the role of non-Smad proteins in the regulation of TGF-β signaling is an emerging line of active investigation, while the canonical Smad-mediated TGF-β pathway has been well studied. Krüppel-like Factor 10 (KLF10) was characterized as a non-Smad protein that was induced by TGFβ immediately. According to the protein structure, the carboxyl-terminus of KLF10 contain three Cys2His2 zinc finger domains, which is highly similarily to specificity protein 1 (Sp1), and grouped into Sp/KLF family as a new member. It has been known that KLF10 could bind to GC-rich sequences on DNA through the zinc finger domains, and the amino-terminus of KLF10 is responsible for transcriptional regulation of the target genes after binding. Recently, there are more evidence showing that KLF10 is related to apoptosis and carcinogenesis and acts as a tumor supressor. However, the detailed physiological functions of KLF10 were not known. To unveil the physiological functions of KLF10 in mammalian, we first used reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot to establish the trasncriptinal and translational expression profiles of Klf10 on adult tissues. The results of the study suggest that KLF10 is a ubiquitous protein but highly expressed in liver, pancreas, testis and epidydimis tissues. In the secondary experiment, we adopted genetic engineering method to create conventional and conditional Klf10 knockout mice. Presently, the conventional and conditional Klf10 knockout embryonic stem cell lines and chimera mice were generated. Following stringent breeding, these chimera mice had passed the knockout construct to their progeny through germline transmission. The results showed that there were twenty-seven conditional Klf10 knockout homozygous (Klf10floxed/floxed) and one conventional Klf10 knockout heterozygous (Klf10+/-) mice, as evidences that have shown by genomic-PCR with stingent primer design.
    Thereafter, these genetic engineered mice could be used as a model to examine the physiological roles of KLF10 in various organs in vivo. By using this model, it will uncover the signaling mechanism of KLF10 and the relationship between KLF10 protein loss and diseases.

    中文摘要 ...................................................... 1 Abstract ........................................................... 2 誌謝 ...................................................... 4 目錄 ...................................................... 6 表目錄 ...................................................... 9 圖目錄 .................................................... 10 附錄目錄 ..................................................... 11 縮寫表 .................................................... 12 第一章 緒論 ............................................ 13 一、 前言 .................................... 13 二、 Krüppel-like family 轉錄因子 .................................................... 13 1. 分類 ............................................................................................. 13 2. 結構特性 ..................................................................................... 14 3. Krüppel-like family 成員在組織的分佈特性、活化和競爭 .... 14 4. Krüppel-like family 成員的生物功能 ........................................ 15 5. Krüppel-like family 成員在醫療上可能的應用 ........................ 20 三、 KLF10 轉錄因子 ........................................................................ 20 1. 發現與基因背景 ......................................................................... 20 2. 蛋白質結構、功能及調控作用 ................................................. 22 3. KLF10 相關家族成員 ................................................................ 25 4. Klf10 基因剔除鼠的相關研究 ................................................... 26 四、 基因剔除鼠建立簡介及高效率基因剔除載體構築策略 ......... 29 1. 基因剔除技術發展的里程碑 ..................................................... 29 2. 基因剔除鼠的建立流程 ............................................................. 29 3. 基因剔除載體的構築 ................................................................. 30 4. 條件式基因剔除 ......................................................................... 32 5. 高效率條件式基因剔除載體構築策略 ..................................... 33 五、 尚待研究的部分及引發本論文的動機 ..................................... 36 第二章 材料與方法 ................................ 37 一、 細胞培養 ..................................................................................... 37 1. 細胞株 ......................................................................................... 37 2. 細胞解凍 ..................................................................................... 37 3. 細胞繼代培養 ............................................................................. 38 4. 細胞數目測定 ............................................................................. 38 5. 細胞保存 ..................................................................................... 39 二、 Klf10 基因剔除鼠的建立 ........................................................... 39 1. 篩選小鼠Klf10 基因體DNA 序列及基因剔除載體的構築 ... 39 2. 胚胎幹細胞的培養、轉染及基因剔除胚胎幹細胞的選殖 ..... 40 3. 胚胎幹細胞DNA 的製備及南方墨點法(Southern blot) .......... 40 4. Cre 重組酶轉染胚胎幹細胞 ...................................................... 41 5. 囊胚期細胞注射、嵌合鼠的育種及基因剔除鼠基因型鑑定 ......... 41 三、 動物飼育 ..................................................................................... 41 1. 純品系小鼠 ................................................................................. 41 2. 基因剔除鼠 ................................................................................. 42 四、 Klf10 基因剔除小鼠之基因型鑑定 ........................................... 42 1. 組織基因體 DNA 萃取 ............................................................. 42 2. 基因體聚合酶鏈鎖反應(Genotyping PCR) ............................... 44 五、 mRNA 表現分析 ........................................................................ 45 1. 組織總RNA 萃取 ...................................................................... 45 2. cDNA 的備製 ............................................................................. 46 3. 反轉錄聚合酶鏈鎖反應(RT-PCR) ............................................. 47 六、 蛋白質表現分析 ......................................................................... 48 1. 組織、細胞總蛋白質萃取 ......................................................... 48 2. 蛋白質定量 ................................................................................. 49 3. 鈉十二烷基硫酸鹽聚丙烯酰胺凝膠(SDS-PAGE)蛋白質電泳 .........50 4. 西方墨點法(Western blot) .......................................................... 52 七、 免疫螢光染色法(Immunofluorescence) .................................... 55 八、 組織包埋、石蠟切片及免疫組織化學染色法 ......................... 56 1. 灌流與固定 ................................................................................. 56 2. 組織脫水、滲蠟與包埋 ............................................................. 57 3. 石蠟切片 ..................................................................................... 58 4. 免疫組織化學染色(Immunohistochemistry) ............................. 58 九、 統計分析 ..................................................................................... 60 第三章 實驗結果 .................................... 61 一、 Klf10 基因在正常人類及小鼠中之表現模式及分布情形 ....... 61 1. Klf10 基因mRNA 在人類及小鼠不同器官組織之表現模式 ....... 61 2. KLF10 蛋白質在小鼠不同器官組織之表現模式 .................... 61 3. KLF10 蛋白質在人類及小鼠不同器官組織之分布情形 ........ 62 4. KLF10 蛋白質在公小鼠生殖細胞株中的表現及分布情形 .... 62 二、 Klf10 基因剔除小鼠的建構 ....................................................... 63 1. 標的載體的構築及小鼠胚胎幹細胞Klf10 基因的替換 .......... 63 2. 條件性Klf10 基因剔除鼠的製造 .............................................. 64 3. 永久性Klf10 基因剔除鼠的製造 .............................................. 64 第四章 討論 ............................................ 66 1. 人類及小鼠的Klf10 基因的轉錄與轉譯模式差異 .................. 66 2. KLF10 蛋白質在細胞中的表現位置 ........................................ 67 3. Klf10 基因剔除鼠之未來研究方向 ........................................... 67 4. 結論 ............................................................................................. 68 參考文獻 .................................................... 70 實驗圖表 .................................................... 81 附錄 .................................................. 103

    Banerjee, S. S., Feinberg, M. W., Watanabe, M., Gray, S., Haspel, R. L., Denkinger, D. J., Kawahara, R., Hauner, H., and Jain, M. K. (2003). The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278, 2581-2584.
    Basu, P., Morris, P. E., Haar, J. L., Wani, M. A., Lingrel, J. B., Gaensler, K. M., and Lloyd, J. A. (2005). KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo. Blood 106, 2566-2571.
    Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. (1993). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21, 3329-3330.
    Bender, H., Wang, Z., Schuster, N., and Krieglstein, K. (2004). TIEG1 facilitates transforming growth factor-beta-mediated apoptosis in the oligodendroglial cell line OLI-neu. J Neurosci Res 75, 344-352.
    Bensamoun, S. F., Hawse, J. R., Subramaniam, M., Ilharreborde, B., Bassillais, A., Benhamou, C. L., Fraser, D. G., Oursler, M. J., Amadio, P. C., An, K.-N., and Spelsberg, T. C. (2006a). TGF[beta] inducible early gene-1 knockout mice display defects in bone strength and microarchitecture. Bone 39, 1244-1251.
    Bensamoun, S. F., Tsubone, T., Subramaniam, M., Hawse, J. R., Boumediene, E., Spelsberg, T. C., An, K. N., and Amadio, P. C. (2006b). Age-dependent changes in the mechanical properties of tail tendons in TGF-beta inducible early gene-1 knockout mice. J Appl Physiol 101, 1419-1424.
    Bieker, J. J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358.
    Blok, L. J., Grossmann, M. E., Perry, J. E., and Tindall, D. J. (1995). Characterization of an early growth response gene, which encodes a zinc finger transcription factor, potentially involved in cell cycle regulation. Mol Endocrinol 9, 1610-1620.
    Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255-256.
    Bureau, C., Peron, J. M., Bouisson, M., Danjoux, M., Selves, J., Bioulac-Sage, P., Balabaud, C., Torrisani, J., Cordelier, P., Buscail, L., and Vinel, J. P. (2008). Expression of the transcription factor Klf6 in cirrhosis, macronodules, and hepatocellular carcinoma. J Gastroenterol Hepatol 23, 78-86.
    Cao, Z., Wara, A. K., Icli, B., Sun, X., Packard, R. R., Esen, F., Stapleton, C. J., Subramaniam, M., Kretschmer, K., Apostolou, I., et al. (2009). Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells. J Biol Chem 284, 24914-24924.
    Carlson, C. M., Endrizzi, B. T., Wu, J., Ding, X., Weinreich, M. A., Walsh, E. R., Wani, M. A., Lingrel, J. B., Hogquist, K. A., and Jameson, S. C. (2006). Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299-302.
    Chalaux, E., Lopez-Rovira, T., Rosa, J. L., Pons, G., Boxer, L. M., Bartrons, R., and Ventura, F. (1999). A zinc-finger transcription factor induced by TGF-beta promotes apoptotic cell death in epithelial Mv1Lu cells. FEBS Lett 457, 478-482.
    Chen, C., Hyytinen, E. R., Sun, X., Helin, H. J., Koivisto, P. A., Frierson, H. F., Jr., Vessella, R. L., and Dong, J. T. (2003a). Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 162, 1349-1354.
    Chen, G. G., Xu, H., Lee, J. F., Subramaniam, M., Leung, K. L., Wang, S. H., Chan, U. P., and Spelsberg, T. C. (2003b). 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. Int J Cancer 107, 837-843.
    Cook, T., Gebelein, B., Belal, M., Mesa, K., and Urrutia, R. (1999). Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J Biol Chem 274, 29500-29504.
    Cook, T., Gebelein, B., Mesa, K., Mladek, A., and Urrutia, R. (1998). Molecular Cloning and Characterization of TIEG2 Reveals a New Subfamily of Transforming Growth Factor-beta -inducible Sp1-like Zinc Finger-encoding Genes Involved in the Regulation of Cell Growth. J Biol Chem 273, 25929-25936.
    Cook, T., and Urrutia, R. (2000). TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. Am J Physiol Gastrointest Liver Physiol 278, G513-521.
    Copeland, N. G., Jenkins, N. A., and Court, D. L. (2001). Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2, 769-779.
    Dang, D. T., Pevsner, J., and Yang, V. W. (2000). The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121.
    Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., and Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576-578.
    Drissen, R., von Lindern, M., Kolbus, A., Driegen, S., Steinlein, P., Beug, H., Grosveld, F., and Philipsen, S. (2005). The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol 25, 5205-5214.
    Eid, M. A., Kumar, M. V., Iczkowski, K. A., Bostwick, D. G., and Tindall, D. J. (1998). Expression of early growth response genes in human prostate cancer. Cancer Res 58, 2461-2468.
    Emery, D. W., Gavriilidis, G., Asano, H., and Stamatoyannopoulos, G. (2007). The transcription factor KLF11 can induce gamma-globin gene expression in the setting of in vivo adult erythropoiesis. J Cell Biochem 100, 1045-1055.
    Fautsch, M. P., Vrabel, A., Rickard, D., Subramaniam, M., Spelsberg, T. C., and Wieben, E. D. (1998a). Characterization of the mouse TGFbeta-inducible early gene (TIEG): conservation of exon and transcriptional regulatory sequences with evidence of additional transcripts. Mamm Genome 9, 838-842.
    Fautsch, M. P., Vrabel, A., Subramaniam, M., Hefferen, T. E., Spelsberg, T. C., and Wieben, E. D. (1998b). TGFbeta-inducible early gene (TIEG) also codes for early growth response alpha (EGRalpha): evidence of multiple transcripts from alternate promoters. Genomics 51, 408-416.
    Feinberg, M. W., Cao, Z., Wara, A. K., Lebedeva, M. A., Senbanerjee, S., and Jain, M. K. (2005). Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280, 38247-38258.
    Fisch, S., Gray, S., Heymans, S., Haldar, S. M., Wang, B., Pfister, O., Cui, L., Kumar, A., Lin, Z., Sen-Banerjee, S., et al. (2007). Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104, 7074-7079.
    Franke, A. G., Gubbe, C., Beier, M., and Duenker, N. (2006). Transforming growth factor-beta and bone morphogenetic proteins: cooperative players in chick and murine programmed retinal cell death. J Comp Neurol 495, 263-278.
    Funnell, A. P., Maloney, C. A., Thompson, L. J., Keys, J., Tallack, M., Perkins, A. C., and Crossley, M. (2007). Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Mol Cell Biol 27, 2777-2790.
    Gao, Y., Qian, W. P., Dark, K., Toraldo, G., Lin, A. S., Guldberg, R. E., Flavell, R. A., Weitzmann, M. N., and Pacifici, R. (2004). Estrogen prevents bone loss through transforming growth factor beta signaling in T cells. Proc Natl Acad Sci U S A 101, 16618-16623.
    Good, K. L., and Tangye, S. G. (2007). Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. Proc Natl Acad Sci U S A 104, 13420-13425.
    Gunther, M., Laithier, M., and Brison, O. (2000). A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. Mol Cell Biochem 210, 131-142.
    Hawse, J. R., Iwaniec, U. T., Bensamoun, S. F., Monroe, D. G., Peters, K. D., Ilharreborde, B., Rajamannan, N. M., Oursler, M. J., Turner, R. T., Spelsberg, T. C., and Subramaniam, M. (2008a). TIEG-null mice display an osteopenic gender-specific phenotype. Bone 42, 1025-1031.
    Hawse, J. R., Subramaniam, M., Ingle, J. N., Oursler, M. J., Rajamannan, N. M., and Spelsberg, T. C. (2008b). Estrogen-TGFbeta cross-talk in bone and other cell types: role of TIEG, Runx2, and other transcription factors. J Cell Biochem 103, 383-392.
    Hawse, J. R., Subramaniam, M., Monroe, D. G., Hemmingsen, A. H., Ingle, J. N., Khosla, S., Oursler, M. J., and Spelsberg, T. C. (2008c). Estrogen receptor beta isoform-specific induction of transforming growth factor beta-inducible early gene-1 in human osteoblast cells: an essential role for the activation function 1 domain. Mol Endocrinol 22, 1579-1595.
    Hefferan, T. E., Reinholz, G. G., Rickard, D. J., Johnsen, S. A., Waters, K. M., Subramaniam, M., and Spelsberg, T. C. (2000). Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells. J Biol Chem 275, 20255-20259.
    Hofbauer, L. C., Hicok, K. C., and Khosla, S. (1998). Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem 71, 96-108.
    Hoovers, J. M., Mannens, M., John, R., Bliek, J., van Heyningen, V., Porteous, D. J., Leschot, N. J., Westerveld, A., and Little, P. F. (1992). High-resolution localization of 69 potential human zinc finger protein genes: a number are clustered. Genomics 12, 254-263.
    House, C. M., Frew, I. J., Huang, H. L., Wiche, G., Traficante, N., Nice, E., Catimel, B., and Bowtell, D. D. (2003). A binding motif for Siah ubiquitin ligase. Proc Natl Acad Sci U S A 100, 3101-3106.
    House, C. M., Hancock, N. C., Moller, A., Cromer, B. A., Fedorov, V., Bowtell, D. D., Parker, M. W., and Polekhina, G. (2006). Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure 14, 695-701.
    Hughes, D. E., Dai, A., Tiffee, J. C., Li, H. H., Mundy, G. R., and Boyce, B. F. (1996). Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2, 1132-1136.
    Janssens, K., ten Dijke, P., Janssens, S., and Van Hul, W. (2005). Transforming growth factor-beta1 to the bone. Endocr Rev 26, 743-774.
    Jin, W., Di, G., Li, J., Chen, Y., Li, W., Wu, J., Cheng, T., Yao, M., and Shao, Z. (2007). TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade. FEBS Lett 581, 3826-3832.
    Jin, W., Qu, L. F., Min, P., Chen, S., Li, H., Lu, H., and Hou, Y. T. (2004). Identification of genes responsive to apoptosis in HL-60 cells. Acta Pharmacol Sin 25, 319-326.
    Johnsen, S. A., Subramaniam, M., Monroe, D. G., Janknecht, R., and Spelsberg, T. C. (2002). Modulation of Transforming Growth Factor beta (TGFbeta )/Smad Transcriptional Responses through Targeted Degradation of TGFbeta -inducible Early Gene-1 by Human Seven in Absentia Homologue. J Biol Chem 277, 30754-30759.
    Kaczynski, J., Cook, T., and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206.
    Kanai, M., Wei, D., Li, Q., Jia, Z., Ajani, J., Le, X., Yao, J., and Xie, K. (2006). Loss of Kruppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 12, 6395-6402.
    Katz, J. P., Perreault, N., Goldstein, B. G., Lee, C. S., Labosky, P. A., Yang, V. W., and Kaestner, K. H. (2002). The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619-2628.
    Khosla, S., Spelsberg, T. C., and Riggs, B. L. (1999). Sex steroid effects on bone metabolism. In Dynamics of Bone and Cartilage Metabolism., M. Seibel, S. Robins, and J. Bilezikian, eds. (San Diego: Academic Press.), pp. 233-245.
    Kobori, N., Clifton, G. L., and Dash, P. (2002). Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res 104, 148-158.
    Kremer-Tal, S., Narla, G., Chen, Y., Hod, E., DiFeo, A., Yea, S., Lee, J. S., Schwartz, M., Thung, S. N., Fiel, I. M., et al. (2007). Downregulation of KLF6 is an early event in hepatocarcinogenesis, and stimulates proliferation while reducing differentiation. J Hepatol 46, 645-654.
    Kuo, C. T., Veselits, M. L., Barton, K. P., Lu, M. M., Clendenin, C., and Leiden, J. M. (1997a). The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11, 2996-3006.
    Kuo, C. T., Veselits, M. L., and Leiden, J. M. (1997b). LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986-1990.
    Laub, F., Lei, L., Sumiyoshi, H., Kajimura, D., Dragomir, C., Smaldone, S., Puche, A. C., Petros, T. J., Mason, C., Parada, L. F., and Ramirez, F. (2005). Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol 25, 5699-5711.
    Lavallee, G., Andelfinger, G., Nadeau, M., Lefebvre, C., Nemer, G., Horb, M. E., and Nemer, M. (2006). The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 25, 5201-5213.
    Leclerc, N., Luppen, C. A., Ho, V. V., Nagpal, S., Hacia, J. G., Smith, E., and Frenkel, B. (2004). Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol 33, 175-193.
    Lee, K. S., Hong, S. H., and Bae, S. C. (2002). Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21, 7156-7163.
    Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., Wozney, J. M., Kim, E. G., Choi, J. Y., Ryoo, H. M., and Bae, S. C. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20, 8783-8792.
    Liu, P., Jenkins, N. A., and Copeland, N. G. (2003). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13, 476-484.
    Luo, X., Ding, L., Xu, J., and Chegini, N. (2005). Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology 146, 1097-1118.
    Matsumoto, N., Kubo, A., Liu, H., Akita, K., Laub, F., Ramirez, F., Keller, G., and Friedman, S. L. (2006). Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 107, 1357-1365.
    Mitsumoto, M., Mitsumoto, A., and Demple, B. (2003). Nitric oxide-mediated upregulation of the TGF-beta-inducible early response gene-1 (TIEG1) in human fibroblasts by mRNA stabilization independent of TGF-beta. Free Radic Biol Med 34, 1607-1613.
    Mori, T., Sakaue, H., Iguchi, H., Gomi, H., Okada, Y., Takashima, Y., Nakamura, K., Nakamura, T., Yamauchi, T., Kubota, N., et al. (2005). Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280, 12867-12875.
    Morita, M., Kobayashi, A., Yamashita, T., Shimanuki, T., Nakajima, O., Takahashi, S., Ikegami, S., Inokuchi, K., Yamashita, K., Yamamoto, M., and Fujii-Kuriyama, Y. (2003). Functional analysis of basic transcription element binding protein by gene targeting technology. Mol Cell Biol 23, 2489-2500.
    Muyrers, J. P., Zhang, Y., and Stewart, A. F. (2001). Techniques: Recombinogenic engineering--new options for cloning and manipulating DNA. Trends Biochem Sci 26, 325-331.
    Nagy, A. (2000). Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99-109.
    Noti, J. D., Johnson, A. K., and Dillon, J. D. (2004). The zinc finger transcription factor transforming growth factor beta-inducible early gene-1 confers myeloid-specific activation of the leukocyte integrin CD11d promoter. J Biol Chem 279, 26948-26958.
    Noti, J. D., Johnson, A. K., and Dillon, J. D. (2005). The leukocyte integrin gene CD11d is repressed by gut-enriched Kruppel-like factor 4 in myeloid cells. J Biol Chem 280, 3449-3457.
    Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1, 27-39.
    Ou, X. M., Chen, K., and Shih, J. C. (2004). Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene. J Biol Chem 279, 21021-21028.
    Oursler, M. J. (1998). Estrogen regulation of gene expression in osteoblasts and osteoclasts. Crit Rev Eukaryot Gene Expr 8, 125-140.
    Oursler, M. J., Osdoby, P., Pyfferoen, J., Riggs, B. L., and Spelsberg, T. C. (1991). Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci U S A 88, 6613-6617.
    Pearson, R., Fleetwood, J., Eaton, S., Crossley, M., and Bao, S. (2008). Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40, 1996-2001.
    Piccinni, S. A., Bolcato-Bellemin, A. L., Klein, A., Yang, V. W., Kedinger, M., Simon-Assmann, P., and Lefebvre, O. (2004). Kruppel-like factors regulate the Lama1 gene encoding the laminin alpha1 chain. J Biol Chem 279, 9103-9114.
    Rajamannan, N. M., Subramaniam, M., Abraham, T. P., Vasile, V. C., Ackerman, M. J., Monroe, D. G., Chew, T. L., and Spelsberg, T. C. (2007). TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem 100, 315-325.
    Reinholz, M. M., An, M. W., Johnsen, S. A., Subramaniam, M., Suman, V. J., Ingle, J. N., Roche, P. C., and Spelsberg, T. C. (2004). Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treat 86, 75-88.
    Ribeiro, A., Bronk, S. F., Roberts, P. J., Urrutia, R., and Gores, G. J. (1999). The transforming growth factor beta(1)-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress. Hepatology 30, 1490-1497.
    Rickard, D. J., Harris, S. A., Turner, R. T., Khosla, S., and Spelsberg, T. C. (2002). Estrogens and progestins. In Principles of bone biology., J.P. Bilezikian, L.G. Raisz, and G.A. Rodan, eds. (San Diego: Academic Press.), pp. 655-675.
    Sasaki-Iwaoka, H., Maruyama, K., Endoh, H., Komori, T., Kato, S., and Kawashima, H. (1999). A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts. J Bone Miner Res 14, 248-255.
    Sebestyen, A., Barna, G., Nagy, K., Janosi, J., Paku, S., Kohut, E., Berczi, L., Mihalik, R., and Kopper, L. (2005). Smad signal and TGFbeta induced apoptosis in human lymphoma cells. Cytokine 30, 228-235.
    Segre, J. A., Bauer, C., and Fuchs, E. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22, 356-360.
    Shindo, T., Manabe, I., Fukushima, Y., Tobe, K., Aizawa, K., Miyamoto, S., Kawai-Kowase, K., Moriyama, N., Imai, Y., Kawakami, H., et al. (2002). Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8, 856-863.
    Simmen, R. C., Eason, R. R., McQuown, J. R., Linz, A. L., Kang, T. J., Chatman, L., Jr., Till, S. R., Fujii-Kuriyama, Y., Simmen, F. A., and Oh, S. P. (2004). Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 279, 29286-29294.
    Song, C. Z., Gavriilidis, G., Asano, H., and Stamatoyannopoulos, G. (2005). Functional study of transcription factor KLF11 by targeted gene inactivation. Blood Cells Mol Dis 34, 53-59.
    Spelsberg, T. C., Subramaniam, M., Riggs, B. L., and Khosla, S. (1999). The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 13, 819-828.
    Subramaniam, M., Gorny, G., Johnsen, S. A., Monroe, D. G., Evans, G. L., Fraser, D. G., Rickard, D. J., Rasmussen, K., van Deursen, J. M., Turner, R. T., et al. (2005). TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25, 1191-1199.
    Subramaniam, M., Harris, S. A., Oursler, M. J., Rasmussen, K., Riggs, B. L., and Spelsberg, T. C. (1995). Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 23, 4907-4912.
    Subramaniam, M., Hawse, J. R., Bruinsma, E. S., Grygo, S. B., Cicek, M., Oursler, M. J., and Spelsberg, T. C. (2010a). TGFbeta inducible early gene-1 directly binds to, and represses, the OPG promoter in osteoblasts. Biochem Biophys Res Commun 392, 72-76.
    Subramaniam, M., Hawse, J. R., Johnsen, S. A., and Spelsberg, T. C. (2007). Role of TIEG1 in biological processes and disease states. J Cell Biochem 102, 539-548.
    Subramaniam, M., Hawse, J. R., Rajamannan, N. M., Ingle, J. N., and Spelsberg, T. C. (2010b). Functional role of KLF10 in multiple disease processes. Biofactors 36, 8-18.
    Subramaniam, M., Hefferan, T. E., Tau, K., Peus, D., Pittelkow, M., Jalal, S., Riggs, B. L., Roche, P., and Spelsberg, T. C. (1998). Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem 68, 226-236.
    Suske, G., Bruford, E., and Philipsen, S. (2005). Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551-556.
    Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., and Urrutia, R. (1997). Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 99, 2365-2374.
    Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
    Tau, K. R., Hefferan, T. E., Waters, K. M., Robinson, J. A., Subramaniam, M., Riggs, B. L., and Spelsberg, T. C. (1998). Estrogen regulation of a transforming growth factor-beta inducible early gene that inhibits deoxyribonucleic acid synthesis in human osteoblasts. Endocrinology 139, 1346-1353.
    Thomas, K. R., and Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503-512.
    Tsubone, T., Moran, S. L., Subramaniam, M., Amadio, P. C., Spelsberg, T. C., and An, K. N. (2006). Effect of TGF-beta inducible early gene deficiency on flexor tendon healing. J Orthop Res 24, 569-575.
    Venuprasad, K., Huang, H., Harada, Y., Elly, C., Subramaniam, M., Spelsberg, T., Su, J., and Liu, Y. C. (2008). The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9, 245-253.
    Wang, J., Xu, N., Feng, X., Hou, N., Zhang, J., Cheng, X., Chen, Y., Zhang, Y., and Yang, X. (2005). Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res 97, 821-828.
    Wani, M. A., Means, R. T., Jr., and Lingrel, J. B. (1998). Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7, 229-238.
    Wu, J., Srinivasan, S. V., Neumann, J. C., and Lingrel, J. B. (2005). The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44, 11098-11105.
    Yajima, S., Lammers, C. H., Lee, S. H., Hara, Y., Mizuno, K., and Mouradian, M. M. (1997). Cloning and characterization of murine glial cell-derived neurotrophic factor inducible transcription factor (MGIF). J Neurosci 17, 8657-8666.
    Zhao, W., Hisamuddin, I. M., Nandan, M. O., Babbin, B. A., Lamb, N. E., and Yang, V. W. (2004). Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23, 395-402.
    Zhou, M., McPherson, L., Feng, D., Song, A., Dong, C., Lyu, S. C., Zhou, L., Shi, X., Ahn, Y. T., Wang, D., et al. (2007). Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol 178, 5496-5504.

    下載圖示 校內:2011-08-20公開
    校外:2011-08-20公開
    QR CODE